
YAXi
Development of an XPath Interpreter

E3-208

Jens Frøkjær Palle B. Hansen

Martin L. Kristiansen Ivan V. S. Larsen

Dan Malthesen Tom Oddershede

Rene Suurland

May 2004

The University of Aalborg

Department of Computer Science

Aalborg Universitet
Department of Computer Science, Frederik Bajers Vej 7E, DK 9220 Aalborg Øst

Title:

YAXi – Development of an XPath
Interpereter

Project period:
Dat1, Feb. 4th - May 28th, 2004

Project group:
E3-208

Group members:
Jens Frøkjær
Palle B. Hansen
Martin L. Kristiansen
Ivan V. S. Larsen
Dan Malthesen
Tom Oddershede
Rene Suurland

Supervisor:
Albrecht Schmidt

Copies: 9

Report page count: 76

Appendics page count: 10

Total page count: 86

Abstract:

This report describes the steps taken to
develop an XPath interpreter: YAXi.
YAXi aims to implement the full
XPath 1.0 language standard.
The main goal of the project is to pro-
duce a working XPath interpreter. The
“Programming Languages and Compil-
ers” course is used for this project.
The report comprises three main parts:
I) Introduction, II) Design, III) Imple-
mentation, Test, and Conclusion.
The Introduction contains thoughts on
different technologies needed for build-
ing a working XPath interpreter.
The Design specifies a general frame-
work of the implementation as well as
an introduction to different parser tech-
nologies.

The last part consists of the four chap-

ters: Implementation, Test, Study Re-

port, and Conclusion. The Imple-

mentation chapter describes the impor-

tant parts of the implementation pro-

cess. The Test chapter outlines how we

performed various tests to verify that

YAXi in fact does implement all fea-

tures of the XPath 1.0 standard. The

Study Report evaluates the educational

process of the project and finally the

the conclusion of the report.

Preface
This report is the result of a DAT2 semester at the university of Aalborg.
The project uses the course “Programming Languages and Compilers” as
PE-course. This project is study-oriented with no commercial or economic
interests involved, thus the main object of the project is to develop a func-
tional program.

Reference resources are marked with [number]. The corresponding num-
ber can be found in the Bibliography in the back of the report.

The web-site “www.cs.auc.dk/∼fr0/” contains: Source code, tests, JavaDoc,
a copy of the report, and a copy of the compiled interpreter.

We would like to thank our supervisor, Albrecht Schmidt, for assistance
during the project period.

Aalborg, May 2004

Jens Frøkjær Palle B. Hansen

Martin L. Kristiansen Ivan V. S. Larsen

Dan Malthesen Tom Oddershede

Rene Suurland

Contents
I Introduction 9

1 Initial Thoughts 11
1.1 Purpose . 11
1.2 System Definition . 11
1.3 Problem Domain . 11

2 XML 13
2.1 Data Model . 13
2.2 API for XML . 18

2.2.1 SAX . 18
2.2.2 DOM . 19
2.2.3 DOM or SAX . 19

3 Introduction to XPath 21
3.1 Location Path . 22
3.2 Expressions in XPath . 22
3.3 Operators in XPath . 24

3.3.1 Node-set Operators . 24
3.3.2 Boolean Operators . 25
3.3.3 Equality Operators . 25
3.3.4 Relational Operators 26
3.3.5 Numeric Operators . 26

3.4 Location Step . 26
3.4.1 AxisSpecifier . 27
3.4.2 NodeTest . 27
3.4.3 Predicate . 28

3.5 Abbreviated Syntax . 28

II Design 29

4 Design Criteria 31
4.1 Compiler or Interpreter . 31

6 CONTENTS

4.1.1 Compiler . 31
4.1.2 Interpreter . 31
4.1.3 What to Choose? . 32

4.2 The rand() Extension . 32
4.2.1 Examples of Use . 33

4.3 The Output . 33

5 Lexers and Parsers 35
5.1 LL(1) and LALR(1) . 35

5.1.1 LL(1) . 36
5.1.2 LALR(1) . 36

5.2 Compiler Compilers . 36
5.3 SableCC . 37
5.4 Backus-Naur Form . 39

6 XPath grammar in SableCC 41
6.1 The Structure . 41

6.1.1 Helpers . 41
6.1.2 Tokens . 42
6.1.3 Ignored Tokens . 42
6.1.4 Productions . 42

6.2 XPath is not LALR Parsable 44
6.2.1 The Problem . 44
6.2.2 The Solution . 44

6.3 Visitor Pattern . 46

7 Framework 49
7.1 Components . 49

7.1.1 The ASTAnalysisAdapter Class 49
7.1.2 The DomTree Class . 51
7.1.3 The NodeSet Class . 51
7.1.4 The AxisSpecifier Class 51
7.1.5 The Function Classes 51
7.1.6 The XPathInterpreter Class 51
7.1.7 The XPathGUI Class 51

7.2 Class Diagram . 52
7.3 Design Specifications . 53

7.3.1 ASTAnalysisAdapter 53
7.3.2 XPathInterpreter . 53
7.3.3 NodeSet . 54
7.3.4 AxisSpecifier . 54

CONTENTS 7

III Implementation, Test, and Conclusion 55

8 Implementation 57
8.1 NodeSet . 57
8.2 AxisSpecifier . 59
8.3 ASTAnalysisAdapter . 60
8.4 Documentation . 61
8.5 Unimplemented features . 61

9 Test 63
9.1 Test Strategy . 63
9.2 Test Examples . 66
9.3 Test of Design Criteria . 67
9.4 Evaluation of Test . 67
9.5 Test Conclusion . 68

10 Study Report 69
10.1 Study Report . 69
10.2 Analysis . 69
10.3 Design . 69
10.4 Implementation . 70
10.5 Testing . 71
10.6 Conclusion . 71

11 Conclusion 73
11.1 Further development . 73
11.2 Conclusion . 73

Bibliography 76

IV Appendices 77

A XPath Grammar 79

B Formal XPath Grammar 83

I
Introduction

1Initial Thoughts

1.1 Purpose

The purpose of this DAT2 project is to understand and use compiler tech-
nologies. We have chosen to implement the language XPath [8] which is
an already existing language defined by the World Wide Web Consortium
(W3C) [12].

1.2 System Definition

The system developed should be able to perform XPath queries on any given
XML-file. The result of a query will be presented in several different ways
chosen by the user, e.g. in XML format or as a graphical tree-representation
of the input XML-file. In either cases it is supposed to represent the output
in a fashioned manner.

1.3 Problem Domain

With the development of Web technologies, the need for storing data keeps
increasing. One of todays popular standards is the XML language [14], which
structures and separates data inside a plain text document. As XML docu-
ments can contain large amounts of data, the need for selecting specific parts
of these documents is apparent. An example of an application could be a

12 Initial Thoughts

task which requires selecting specific local news from an XML document con-
taining news from all over the world. This introduces a need for a language
able to perform selections on such large amounts of structured data.

The main task of this project is to implement an interpreter from scratch
which can process and select specific parts of an XML document. W3C,
an organization which creates standards that define various languages for
use on the Internet, has published a standard for a language called XPath
[8]. XPath is a query language designed for selecting data contained within
XML documents. During this project an interpreter, called YAXi, will be
implemented. This interpreter will conform to the requirements specified in
the XPath standard developed by W3C.

2XML

XML is a language for containing and managing information. It is a family of
technologies that can do everything from formatting documents to filtering
data. XML builds on the philosophy that information handling should be
useful as well as flexible by refining it to its purest and most structured form
while still maintaining high readability.

The purpose of this project is to implement an XPath interpreter and there-
fore this chapter will only look at how XPath represents XML documents
internally and which considerations were made before the design process was
started.

This chapter is mainly based on Learning XML [23], Java API for XML
Processing [19], Document Object Model [11], and About SAX [6].

2.1 Data Model

The following section will primarily be based on Section 5 in the XPath
Standard [8], Data Model, and the Section Nodes in Perfect XML [22].

The XPath language sees an XML document as a tree. All elements contained
in the XML document are represented in the tree as nodes. The structure
of the tree is actually a lot like that of a file system, where the nodes in the
tree represent the files and folders in the file system hierarchy. XPath uses a
syntax similar to the path-like addressing of a file system, which makes a tree
structure an ideal choice for the data model of XPath. The tree structure in
XPath has seven different node types, which are listed below.

14 XML

Document element (Root node) The document element is also called the
root node. The document element contains the whole XML document,
except for the comments and processing instructions that may be con-
tained outside the start tag of the XML document. A document node
can be found in Line 2 of Listing 2.1.

Element The element node has the special property that it can contain all
node types except the root node. An element node can be either a leaf
or branching point in the XML tree. Line 2 in Listing 2.1 contains an
element node.

Attribute An attribute node is a leaf node. The node may be seen as part
of an element node because it contains information about the element,
but an attribute is in fact a separate node. An attribute node can be
found at Line 2 in Listing 2.1.

Text A text node is a leaf node. One element no may contain zero or more
text nodes. The text node may be separated by comments, processing
instructions and element nodes. A text node can be found at Line 4 in
Listing 2.1.

Comment The comment node does not have any significant effect on the
contents of the document, it is just provided in order for the user to
add comments to the document. A comment node can be found at
Line 7 in Listing 2.1.

Processing instruction Like a comment, this node is added to the DOM tree
for sake of completeness. A processing instruction is used in XML as
a way of keeping processing specific information. A typical processing
instruction can be found at Line 9 in Listing 2.1. In this case the
processing instruction tells a program where to find a stylesheet.

Namespace A namespace may look like an attribute, but it is not an at-
tribute because it has an effect on the node and its descendants. If a
namespace is declared in an element, the children of the element in-
herits the namespace from its parent. The scope of a namespace is
hierarchical.

In an XML document the first line is called a document prolog and is not
considered as one of the seven node types. An example of a document prolog
can be found at Line 1 in Listing 2.1. The document prolog holds infor-
mation about things like type, text encoding, and instructions to the XML
processors. It is, however, not included in the tree.

2.1 Data Model 15

The tree that XPath works on has the following structure:

• The root and the element nodes contain a list of their children.

• Element, text, comment, and processing instruction can be children of
other nodes.

• Attribute and namespace nodes are not children of other nodes, but
they accept an element node as their parent.

In other words, attribute and namespace nodes are contained inside their
parent node and provide information about their parent node.

� �
1 <?xml version=” 1.0 ”?>
2 <group name=”E3−208” al ias=”d204a”>
3 <member name= ”Pa l l e B. Hansen” shoesize=”44”>
4 <phone>12324665</phone>

5 <phone>23233321</phone>

6 </member>

7 <!−− dat2 p ro j e c t −−>

8 <project>

9 <?xml−stylesheet type=” t e x t /xml” href=” l im i t e d . x s l ”?>
10 <homepage xmlns=” h t t p : //www. cs . auc . dk/d204a” />

11 <t i t le >XPath I n t e r p r e t e r</t i t le >

12 <supervisor name=”Alber t ” />

13 <url>h t tp : //www. cs . auc . dk/d204a</url>

14 <email>d204@cs . auc . dk</email>

15 </project>

16 </group>
� �

Listing 2.1: Example of an XML document

The following list, maps node types to line numbers of the above example.

Node type Line
The document prolog 1
Document element 2
Processing instruction 9
Element 2, 3, 4, 8, 10, 11, 12, 13, 14, and 15
Attribute 2 and 3
Text? 4, 5, 11, 12, 13, and 14
Comment 7
Namespace 9

? Excluding text nodes, which contains only whitespaces.

The following paragraph will describe how the XML document in Figure
2.1 is mapped into a Document Object Model tree by describing how the
mapping is done on the first occurrence of all of the various node types.

16 XML

The first thing that is added to the DOM tree is the root node. The root
node is a pointer to the first element node in the DOM tree. The next thing
that is added to the DOM tree is one element node and two attribute nodes.
The element node gets the value group. The first attribute is named name

and gets the value Palle B. Hansen, while the second attribute gets the
name shoesize and the value 44. At line four an element node and text
node is added. The text node gets the value 12324665 and the element node
the value phone. At line seven a comment node is added, which gets the
value dat2 project. At line eleven a processing instruction is added to the
DOM tree with the value http://www.cs.auc.dk/d204a.

2.1 Data Model 17

Figure 2.1: An XML document viewed as a DOM tree

18 XML

2.2 API for XML

We had to find an XML parser API that provided us with a data type suitable
for our processing needs. We decided to use the Java API for XML Processing
(JAXP). JAXP provides the two industry standard APIs Document Object
Model (DOM) and Simple API for XML (SAX), each of which provide their
own mechanism for parsing XML documents.

2.2.1 SAX

SAX is short for Simple API for XML [6]. As the name implies, this is an
API for parsing XML data. SAX is an event-based parser [5] that will not
build a tree, but reacts upon events happening in the data input stream.
The principles used by SAX are very similar to those of a lexer [4]. SAX
divides an input string into tokens using a grammar that can handle XML
events. SAX could easily be compared to a finite automaton [25] designed to
recognize a regular language, or in SAX’s case, the XML grammar. To use
SAX along with XPath, additional code that builds a tree would have to be
written because XPath needs random access to the tree.

A simple example shows how SAX parses XML data.

<?xml version="1.0"?><doc><para>Hello, world!</para></doc>

An event-based interface will break the structure of this document down into
a series of linear events, such as these:

start document

start element: doc

start element: para

characters: Hello, world!

end element: para

end element: doc

end document

Big-Oh notation for SAX depends on the implementation. It is only the cur-
rent state of the parser that matters along with the states saved in memory.
This gives us a general space and time complexity of O(n), where n is the
length of the document.

2.2 API for XML 19

Figure 2.2: DOM tree

2.2.2 DOM

DOM is short for Document Object Model. It defines an interface that
provides dynamic access to documents and allows for further processing and
incorporation of the ability to access all nodes in the document randomly
at any time. The DOM is a tree structure where each node represents an
element in the XML document. The API provides, among other things,
methods for traversing and changing the tree. The interface is divided into
two parts: a core and an HTML [7] part.

Basically DOM works like a parser and builds a DOM tree that reflects the
XML structure. It builds a tree in a similar way a parser builds an abstract
syntax tree. For this project the DOM API in the JAXP package is used to
build the DOM tree.

Time complexity should also be considered. When creating a DOM tree it
seems obvious that the time used for building the tree is O(n) and it will
require O(n) to store the tree in memory. Traversal of the tree will also
require O(n). According to an article [2] on XML.com it is actually O(n2)
when using the method getItem() for traversal. A DOM tree works like
a linked list, which means it is not possible to access the list at a random
location, which forces a complete traversal of the list when searching. Should
this function be used in a loop with n elements there will be 0.5(n2 − n)
references, or O(n2). This means that the DOM interface will be slow and
require lots of memory when used on large documents.

2.2.3 DOM or SAX

It can be argued that SAX is a speed-wise efficient implementation compared
to using an implementation based on DOM. This is because SAX reads the
XML document’s structure only once as an I/O stream instead of building a

20 XML

representation of the XML document in memory. This however is not very
useful in this project unless the parse information is stored in memory. For
example, when SAX transmits a chunk of character data, there is no way to
access the parent of the current element because it is not stored in memory.
One does not even know whether the character data you receive is the entire
contents of a continuous string or just a fragment, you have to wait for the
following SAX events to establish that. This means that SAX is also much
more efficient memory-wise than DOM, because the DOM has to build a
tree in memory. This could cause a problem when DOM parses large XML
files. Suppose a large table is stored in XML format, and one just wanted
to count the records in the table. SAX would do the job efficiently. On the
other hand if one would want to access the records multiple times to sort the
table using some algorithm, a DOM tree would be very useful, assuming one
has enough memory for the entire table. In many cases, however, one needs
to process one record at a time in a loop. In a situation like that it does
not make sense to build a tree containing the entire XML document, so the
programmer could successfully use SAX, where you only have the most recent
element accessible in memory. XPath queries will often require elements to
be accessed in random order instead of just sequential order. Because the
DOM builds a tree that can be traversed in any order you like, it is apparent
that using the DOM approach would fit this project perfectly. Furthermore
we estimate that the speed and memory issues with the DOM API will not
cause a problem, as our interpreter will probably not be used with extremely
large XML documents.

3Introduction
to XPath

The XPath language is a standard developed by W3C to be a subset of the
standards XPointer [10] and XSLT [9]. XPath, or the XML Path Language,
was developed because both of the aforementioned standards needed a way to
select or point to parts of an XML document. XSLT needs XPath for selecting
elements to apply templates to and XPointer for referencing between different
parts of a document. Even though XPath’s main usage is selecting elements
from an XML document, it can also be used to evaluate string, numerical,
and boolean expressions.

In order for XPath to work on an XML document, the document is conve-
niently converted into a tree of nodes, which allows XPath to work on the
logical structure that XML documents provide. These nodes have different
types which will be covered later in this section. To get an idea of how
XPath views an arbitrary XML document in a tree structure, take a look at
Figure 2.1.

When selecting elements in a document, XPath provides, via so-called axes,
a path-like (e.g., /a/b/d) access to those elements–hence the name XPath.
Expressions in XPath will evaluate to an object of the basic types shown in
Figure 3.1.

This brings us to the most interesting and important part of an XPath ex-
pression: the Location Path.

This chapter is based on the XPath Standard [8].

22 Introduction to XPath

3.1 Location Path

The XPath language is designed for selecting parts of an XML document.
XPath uses the DOM [11] standard as data model. To understand how an
expression is evaluated, one has to understand the concept of a context. The
context in which an expression is evaluated consists of the following:

• The context node. A node from a given node-set.

• Context position. The position in the current node-set.

• Context size. The size of the current node-set.

• A set of variable bindings.

• A function library. See Section 4, “Core Function Library” in the
XPath Standard.

• A namespace in the scope of an expression.

An XPath expression is a series of location steps which are separated by
slashes (/). The location path selects one or more nodes relative to the
context node. The location steps are evaluated one at a time from left to
right. The node-set returned after each step is used as the context for the
next step. The result of a location path is a node-set of zero or more nodes.

There are two types of location paths, an absolute and a relative. The
absolute location path starts with a slash (/) and the relative does not. The
absolute location path selects nodes from the root of the tree, whereas the
relative location path selects nodes relative to the context node. A location
step in XPath consists of these three parts: an axis, a node test and zero
or more predicates. The axis specifies the path to follow in the document
structure used by XPath, which is more or less the same as used by the
DOM standard. The node test is used to select only nodes with a certain
name or type. And finally the predicates work as a filter on the nodes selected
by the node test.

3.2 Expressions in XPath

The purpose of this section is to describe what legal XPath expressions are
and how such expressions are evaluated. Also covered in this section is how

3.2 Expressions in XPath 23

the various operators in XPath work and how they are used with the four
basic types in XPath.

The primary syntactic production rule in XPath is an expression. An ex-
pression is represented in the XPath grammar as the production rule expr

in the XPath standard. When an XPath expression is evaluated the result
must be of these types:

• Node-set (an unordered collection of nodes without duplicates)

• Boolean (true or false)

• Number (a floating-point number)

• String (a sequence of characters)

Figure 3.1: The four basic types allowed as result values of an XPath expres-
sion

The example in the following section will use the PathExpr production rule
in the XPath grammar, as it’s starting point. Figure 3.2 shows the derivation
sequence through the XPath grammar from the 14th production rule to the
first production rule, LocationPath. All the production rules can be found
in Appendix B.

Expr → OrExpr → AndExpr → EqualityExpr → RelationalExpr →
AdditiveExpr → MultiplicativeExpr → UnaryExpr → UnionExpr →
PathExpr → LocationPath

Figure 3.2: The derivation sequence through the grammar from Expr to
LocationPath.

Under normal circumstances, XPath is used for selecting nodes in an XML
document with the use of the LocationPath rule. XPath can however also
be used for string manipulation and evaluation of boolean and arithmetic
expressions. The string manipulations allowed by XPath are performed by
the FunctionCall production rule.

To examine if XPath supports the expressions shown in Figure 3.3, one
could take a look at the FilterExpr production rule which becomes the
PrimaryExpr production rule which finally becomes the FunctionCall pro-
duction rule. The return type of function calls depend on the function called,
but must be one of the types from the types mentioned in Figure 3.1.

This means that XPath allows a FunctionCall as an expression. As said
earlier, XPath also evaluates boolean and arithmetic expressions.

24 Introduction to XPath

• substring("Hello", 2) yields the string ello

• number("34.2") yields the float 34.2

• boolean(/AAA) yields true if the node-set is not empty and false oth-
erwise

Figure 3.3: Expressions that merely contain function calls

3.3 Operators in XPath

XPath provides a series of operators. How they work, and on which types
they can be used will be explained in the following sections.

The operators in XPath are left associative, and the precedence rule is as
follows, where highest number has highest precedence:

1. or

2. and

3. = and !=

4. <=, <, >, and >=

5. +, -

6. mod, div, *

3.3.1 Node-set Operators

A node-set is the result of a location path expression and it contains zero or
more nodes. Figure 3.2 shows that the location path is just an expression by
showing the production derivation sequence for the location path from the
primary expression, Expr, to the location path expression, LocationPath.

The node-set is the only one of the basic types that can be combined by using
the | operator. The UnionExpr production rule states that the | operator
should work with all the types in the XPath language, but the standard says:

The | operator computes the union of its operands, which must be node-sets.

3.3 Operators in XPath 25

Figure 3.2 shows that the step before a location path is a PathExpr. The
PathExpr can become a FilterExpr which can then become a PrimaryExpr

which can then become either a VariableReference, ’(’ Expr ’)’, Literal,
Number, or FunctionCall. That means that we can, according to the syn-
tax, join e.g., numbers with node-sets. Since there are no rules for joining
types other than a node-set, joining only applies to node-sets according to
the XPath Standard [8].

3.3.2 Boolean Operators

XPath offers two boolean operators: and and or.

The or operator returns true if at least one of its operands is true, otherwise
it returns false.

The and operator returns true if and only if both of its operands are true,
otherwise it returns false.

3.3.3 Equality Operators

If a string, number, or boolean value has to be compared to a node-set, the
node-set will have to be converted into the same type as that of the object
it is being compared to. This is because non-node-set objects can not be
converted into a node-set, while the same is not true the other way around.
The following section tells when the use of the equal operator would return
true. If the not equal operator had been used on the same comparisons the
result would have been false. The six rules tell how the objects are converted.
But since a node-set often must be converted more than once before they are
compared, they are described separately from the other objects.

Node-set = String The result will be true if a node in the node-set has
a string value that equals the string value of the
string.

Node-set = Number The result will be true if a node in the node-set has
a string value that, converted with the the number
function, equals the numerical value of the number.

Node-set = Node-set The comparison between two node-sets will be true
if both node-sets contain a node with the same
string value.

26 Introduction to XPath

If none of the objects are node-sets the equality comparisons must be done
in the following ways.

If one of the The object that is not a boolean will be converted
objects is a boolean with the boolean functions from the function core.

If one of the The object that is not a number will be converted
objects is a number into a number using the number functions from the

function core.

If one of the See Node-set = String.
objects is a string

Boolean - Boolean The result would be true if both object are true or
false.

String - String Two strings are equal if and only if they consist of
the same sequence of UCS characters.

Number - Number Numbers are compared for equality according to
IEEE 754 [21].

3.3.4 Relational Operators

Relational operators work similarly to equality operators, see Section 3.3.3.

3.3.5 Numeric Operators

The operators used on numbers are +, -, mod, and div. When used, the
operands will be converted into numbers with the number functions from the
function core before the expression is evaluated.

3.4 Location Step

A location step consists of three parts: an AxisSpecifier, a NodeTest, and
zero or more Predicates.

3.4 Location Step 27

Figure 3.4: A map that show the effect of the various axes

3.4.1 AxisSpecifier

The axis allows for forwards and backwards traversal in a document. XPath
contains a number of axes which is illustrated in Figure 3.4. The grey node
is the current node and the circled sets illustrate which nodes will be selected
given the labeled axis.

There are axes which do not appear on Figure 3.4, namely the axes descendant-
or-self and ancestor-or-self. These axes are the union of, respectively, de-
scendant and self and ancestor and self.

3.4.2 NodeTest

A node test is used to test if a node or a node characteristic is contained in
an axis. The test is performed on the context node. Figure 2.1 is used in the
following example:

Expression 1 /descendant-or-self::phone

28 Introduction to XPath

The result of Expression 1 would return the two nodes
<phone>1234565</phone> and <phone>23233321</phone>, as these element
nodes match the node test.

3.4.3 Predicate

A predicate is an expression that filters nodes from the node-set selected
by the AxisSpecifier. Predicates are written after the AxisSpecifier en-
closed by square brackets ([]). Every expression in a predicate is evaluated
to a boolean for each node in the node-set.

The following Expression is based on the XML document shown in Listing
2.1.

Expression 2 /desdendant-or-self::phone[position()=2]

Expression 2 will return the node <phone>23233321</phone>, as this node is
the second element matching the node test of the axisspecifier. As a predicate
always evaluates to a boolean, the result of Expression 2 would be the same,
if the predicate was written like [2].

3.5 Abbreviated Syntax

An XPath implementation must provide the user with abbreviated syntax
that allows for simplified XPath queries.

There are three abbreviations. The most important one specifies that child::
can be left out in an expression. This means that the expression AAA is ab-
breviated syntax for the expression child::AAA.

Another abbreviation is //, which is abbreviated syntax for
/descendant-or-self::node()/. Therefore a query like //AAA would be
translated into /descendant-or-self::node()/child::AAA.

The last abbreviation is the @, which is abbreviated for attribute::, so
@AAA would be translated into attribute::AAA.

II
Design

4Design Criteria

This chapter describes which parts of XPath we have chosen to implement
in our interpreter. As a basic assumption we want to implement the whole
XPath 1.0 language.

This chapter is based on the XPath standard [8].

4.1 Compiler or Interpreter

In order to determine whether our XPath implementation should be built
as a compiler or an interpreter, we need to summarize what the difference
between the two are.

4.1.1 Compiler

A compiler is a program that translates a source program written in a high-
level language into a lower level language for a computer architecture. This
can then be executed without using the compiler again.

4.1.2 Interpreter

An interpreter reads a source program written in a high-level language as
well as some data for this program. The interpreter then runs the program
against the data in order to produce the output.

32 Design Criteria

4.1.3 What to Choose?

The question to be answered in this section is whether to build an inter-
preter or a compiler for implementing the XPath language. There are ad-
vantages and disadvantages with both solutions which must be considered
before choosing which technology to use.

One of the advantages of using a compiler would be that a query could be
compiled and saved for later execution in, for example, a virtual machine.
This would be useful if the same query had to be executed many times.
A disadvantage would be that if a query is to be executed only once, the
execution time would be greater than that of an interpreter.

If most queries are to be executed only once, it would make no sense to
compile the queries. Therefore an interpreter would be the best choice for
the implementation.

Because of this an interpreter was chosen to be built for implementing the
XPath language.

4.2 The rand() Extension

One thing we feel is missing in the XPath language, is some form of random-
ization. Therefore we have decided to implement an extension to the XPath
function libary–a function we have named rand().

A function that provides randomization can be utilized in many situations.
An example of where such a function would be useful, is when using XPath
to implement banner-cycles on web sites or when selecting random quotes.

The rand() function has the following syntax:

syntax description
rand() If no arguments are given, rand() will return a random

integer between 1 and the length of the context node-set.
rand(n) If one argument is given, rand(n) will return a

random integer between 1 and n

(where 1 ≤ n ≤ |node-set|)
rand(n,m) If two arguments are given, rand(n,m) will return a

random integer between n and m

(where 1 ≤ n ≤ |node-set| and 1 ≤ m ≤ |node-set|)

4.3 The Output 33

4.2.1 Examples of Use

The primary use of the random function must be in a predicate like in Ex-
pression 3. The result of the example is a node-set containing one random
element with the name QUOTE from the context node-set.

Expression 3 //QUOTE[position()=rand()]

When the rand() function is called in a predicate, it is only randomized
once–not once for every node in the node-set. If this was not the case, func-
tions like position() would return a completely unexpected result, because
position() is calculated for each node. If rand() returned a different num-
ber for each node, the result could likely be an empty node-set because in
this case position() might never equal a random number. Thus, only one
random number is generated and therefore it is guaranteed that a node is
returned.

The rand() function can also be used as an argument in any other function.
Expression 4 shows how the rand() function is used as an argument in the
substring function.

Expression 4 substring("abcdefghkl", rand(7,9))

The expression will return one of the following results:

• In case rand(7,9) evaluates to 7, the result yielded is the string ghkl

• In case rand(7,9) evaluates to 8, the result yielded is the string hkl

• And finally, in case rand(7,9) evaluates to 9, the result yielded is the
string kl

4.3 The Output

The syntax of the output of an XPath expression is not specified in the
XPath standard, so it is up to the implementation how the output should
be formatted. As the input format is XML, it would make sense that the
output also would be in some XML structure. Our implementation does it
in the following way:

The XML output starts with the tag <nodeset> and ends with the tag
</nodeset>. Inside these tags all result nodes will appear. If a node from

34 Design Criteria

the result set is an element, the node will be enclosed by the tags <Element>
and </Element>. Listing 4.1 shows how the output of Expression 5 would
be formatted when used with the XML document in Listing 2.1

Expression 5 //member

� �
1 <nodeset>

2 <Element><member name= ”Pa l l e B. Hansen” shoesize=”44”>
3 <phone>12324665</phone>

4 <phone>23233321</phone>

5 </member>

6 </Element>

7 </nodeset>
� �

Listing 4.1: An example of output from the interpreter, containing only one
node

Note that the example in Listing 4.1 contains only one node. All other nodes
which appear in the output are children of the selected node, and therefore
part of the selected node.

If a node from the result set is an attribute, the tags surrounding the node
would be <Attribute> and </Attribute>, and if the node is a text node
the tags surrounding the selected node would be <Text> and </Text>.

As part of the graphical user interface, we have also implemented other out-
put formats like DOT, HTML and postscript. The main purpose of these
output formats is to be able to easily get an overview of the output. The
DOT format draws the DOM tree while coloring the selected nodes red and
the rest of the nodes green.

5Lexers and Parsers

In order to make the interpreter analyze whether an XPath query is valid
or not, we use a lexer and a parser. A language is usually specified in a
vocabulary form, called the grammar file, which is processed into two sepa-
rate recognizers. The language level recognizer is called the parser and the
vocabulary recognizer is called the scanner or lexer. The parser recognizes
the grammatical structure in a stream of tokens whereas the lexer recognizes
the structure in a stream of characters. There are different ways to construct
lexers and parsers. Of course one could write them by hand from scratch, but
this is a straight-forward monotonous and robotic process which can be very
error-prone. Therefore there exist programs designed for automating this
process. The one we have chosen is called SableCC, which we will elaborate
on in Section 5.2.

5.1 LL(1) and LALR(1)

There are two main groups of parsers: LL(1) and LALR(1). There is no
strict equivalence between LL(1) and LALR(1), as there are LL(1) gram-
mars that are not LALR(1) compatible and there are LALR(1) grammars
that are not LL(1) compatible. One of the common features of LL(1) and
LALR(1) parsers is that they look ahead one token in order to determine
the next production. Figure 5.1 shows the parsing of the expression /A. The
(.) indicates where the parser is currently at, meaning that it is the token
following the (.) that is currently being inspected.

36 Lexers and Parsers

(.)/A The parser is now at the start of the query and looking
ahead one token. This is recognized as a slash (/).
Now the parser finds a production matching this slash,
which is the AbsoluteLocationPath.

/(.)A We are now looking at the character A. This is parsed as a Letter.
Now the parser can finish the production AbsoluteLocationPath,
since the Letter will eventually derive to a
RelativeLocationPath, which ends the derivation sequence.

/A(.) Now we are at the end of the query and the whole production
is finished, and therefore the query is parsed successfully.

Figure 5.1: Parsing the query /A

5.1.1 LL(1)

LL(1) parsers are top-down parsers. One of the disadvantages with LL(1)
parsers is that they can not parse left-recursive grammars, which means that
the grammar must be changed in order to make it LL(1) parsable. Actually in
some cases it is impossible to make an LL(1) grammar for a specific language.
On the other hand it is easier to write an LL(1) parser than for example
an LALR(1) parser, because an LL(1) parser does not have to handle, for
example, left-recursion.

5.1.2 LALR(1)

Where LL(1) parsers are top-down, LALR(1) parsers are buttom-up, where
the parser tries to construct the parse tree from the buttom upwards. One of
the advantages with LALR(1) parsers is that thay can handle left-recursive
grammars, as they are buttom-up. The parser tracks the matched tokens on
the righthand side. It may not know at once which production to choose, so
it tracks a set of possible matching productions to find the correct one. A
disadvantage with LALR(1) parser is that it is very hard to construct from
hand. But luckily, as mentioned before, there are programs like SableCC
that automate this process.

5.2 Compiler Compilers

A compiler compiler is a program designed to automate the process of writing
compilers. A compiler compiler is utilized by rewriting a formal grammar into

5.3 SableCC 37

a syntax that the compiler compiler in question understands and the feeding
it to the compiler compiler.

There are several possibilities involved when choosing a compiler compiler.
Several different combinations are available out there depending on program-
ming language. The combination of Lex and YACC [18] allows a programmer
to write a complete single-pass compiler simply by writing two specifications:
one for Lex and one for YACC. The Java versions of these programs are called
JLex [3] and JavaCUP [24]. Some advantages of using this combination would
be:

• JLex DFA based lexers are usually faster than hand written lexers.

• The languages that can be recognized are LALR(1) compatible which
means that one does not need to rewrite the grammar, as LALR(1)
handles left recursion.

• Both JLex and JavaCUP are available in source code form.

And some drawbacks:

• JLex and JavaCUP have not been specifically designed to work to-
gether, so it is the programmer’s job to build the links between the
code generated by both tools.

• The lack of support for ASTs renders JavaCUP ill suited for multiple-
pass compilers.

There are of course other compiler compilers out there. Another popular one
is JavaCC, which is based on LL(k) rather than LALR(1). The whole input
is given in just one file. JavaCC is based on LL(k) it is top-down, which
means that all left-recursion must be eliminated.

It is here SableCC comes into the picture. SableCC is a powerful tool,
that has many of the advantages of the above mentioned compiler compilers.
SableCC generates a lexer, a parser, and an abstract syntax tree. This will
be elaborated on in Section 5.3.

5.3 SableCC

SableCC is a powerful tool that generates both a lexer and a parser. Fur-
thermore it generates an AST and a special tree-walker class for this AST.

38 Lexers and Parsers

One of the advantages of using SableCC is that one only has to write one
grammar file for both the lexer and parser. This way it is easier to debug er-
rors. Compiler compilers like JLex and JavaCUP create a lexer and a parser
which are not designed to work together, whereas SableCC generates a lexer
and a parser which are fully interoperable.

As SableCC is a buttom-up parser, it accepts LALR(1) languages. This
means that we do not need to rewrite our grammar in order to eliminate
left-recursion, as LALR(1) can handle left-resursion.

Another advantage with SableCC is that there is a clear separation of user
generated code and machine generated code. This is handy when the code
fails during development, because errors are easier to pin-point to either the
user generated code or the code generated by the compiler compiler.

� �
1 node . Start tree ;
2 try

3 {
4 Parser p = new Parser (
5 new Lexer (
6 new PushbackReader(
7 new CharArrayReader(query . toCharArray ()) ,10000))) ;
8
9 tree = p . parse () ;

10 }
11 catch (Exception e}
12 { //This block i s c a l l e d i f the l e x e r or par se r f a i l s }
13
14 try

15 {
16 ASTAnalysisAdapter ast = new ASTAnalysisAdapter (ns) ;
17 tree . apply(ast)
18 }
19 catch (Exception e)
20 { //This block i s c a l l e d i s some usercode f a i l s }

� �

Listing 5.1: How the lexer and parser is called from user-code

In the block at Line 11 in Listing 5.1, all errors from the lexer and parser
are caught. This makes it easy to debug bugs in the grammar, as the whole
lexer and parser is generated without any user code.

As mentioned before, SableCC generates a special tree-walker class for the
AST. This class is called DepthFirstAdapter. In order to use this feature,
one must construct a new class extending the DepthFirstAdapter. When
applying this (Line 17 in Listing 5.1), a method corresponding to every node
in the AST is called using the visitor pattern, which will be discussed in
Section 6.3.

For this project SableCC was found the most suitable due to its many options

5.4 Backus-Naur Form 39

and functionality. The fact that SableCC generates a parser and a lexer which
are fully compatible was also an important factor in this choice.

5.4 Backus-Naur Form

BNF is short for Bachus-Naur form, which is a formal mathematical way to
describe a language [17]. It is used to define the grammar of a language in
a way which ensures that there can be no disagreements or ambiguity as to
what is allowed and what is not. A BNF grammar is so unambiguous that
one can mechanicly construct a parser for it[25]. A language defined by a
BNF grammar is the set of all strings you can produce by the language rules.
Rules are called production rules and a rule could look like:

symbol := alternative1 | alternative2

This syntax means that you can replace the symbol on the left side of the :=
with either alternatives on the right side. Below is a simple BNF grammar:

S := ’-’ FN | FN

FN := DL | DL ’.’ DL

DL := D | D DL

D := ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

The symbols on the left are all abbreviations: S is the start symbol, FN pro-
duces a fractional number, DL is a digit list, while D is a digit. With this
grammar you can write all numbers, including negative and fractional num-
bers. This language however has some recursion, making it more difficult to
understand (DL := D | D DL). This can be solved using the Extended BNF.
EBNF adds three operators to BNF in order to describe languages:

? which means that the symbol (or group of symbols in parenhesis) to
the left of the operator is optional (zero or more times).

* which means that something can be repeated any number of times
(and possibly be skipped altogether).

+ which means that something can appear one or more times.

Using these operators the language defined above can be written as:

S := ’-’? D+ (’.’ D+)?

D := ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

This way of writing is less complex, but it must be noted that EBNF is not
more powerfull in terms of defining a language, just more convenient.

6XPath grammar
in SableCC

This chapter is mainly based on Étienne Gagnon’s master thesis on SableCC
[16].

6.1 The Structure

The XPath grammar file, which can be seen in Appendix A, is the result
of the massaging of the grammar from the XPath standard. There are four
main categories in the XPath grammar file:

Helpers Specification of strings or regular expressions that can
be used to define tokens.

Tokens Definition of the formal tokens recognized by the lexer.
Ignored tokens Tokens that the parser will ignore.
Productions Definition of the productions in the grammar, specified

from tokens only.

6.1.1 Helpers

Helpers is a specification of strings or regular expressions. We have defined
three helpers:

letter = [’A’..’Z’] | [’a’..’z’] | [0x7F .. 0xFF]

42 XPath grammar in SableCC

digit = [’0’..’9’]

all = [0 .. 0xFF]

These are necessary to define some of the tokens, but not needed in the
productions. The helpers can be seen as substitutions.This means that when
a token contains digit, digit can be substituted with [’0’..’9’].

6.1.2 Tokens

Tokens are mainly definitions of small strings. In the grammar file, the most
unambiguous tokens are put in the top of the section containing tokens. This
has the consequence that tokens like digit, letter, and all are put in the
last part of this section.

Tokens are read top-down, meaning that the first token matching the current
input is returned.

This is also the reason why literal, number and ncname are placed in the
bottom of the token section.

literal = ’’’ ([all - ’’’])* ’’’ | ’"’ ([all - ’"’])* ’"’;

number = digit+ (’.’ digit+)? | ’.’ digit+;

ncname = (letter | ’_’) (letter | ’_’ | digit | ’.’ | ’-’)*;

One thing comes to mind when reading the tokens: star and multistar are
both defined to be *. This has the consequence that the latter of the two is
never used, but this is solved later in Section 6.2.

6.1.3 Ignored Tokens

The ignored tokens are left out by the parser, meaning that even though
a specified token appears in a query, it will not be evaluated. In XPath
whitespaces are ignored, causing the expression “/*” to return the same
result as “/ *”. This makes the interpreter more flexible when accepting
user queries.

6.1.4 Productions

Productions define the relationship between tokens, and therefore they can
only be defined using tokens. The first production defined will always be the
first evaluated.

6.1 The Structure 43

Productions

start = expr;

In the grammar every XPath expression must start with a the expr produc-
tion rule.

The grammar that SableCC accepts must be a context-free-grammar in
Backus-Naur Form [15]. Actually it accepts a variation of the EBNF (Ex-
tended Backus-Naur Form), which is the BNF extended with regular expres-
sions ((), +, ?, and *). The reason why it is a variation of the EBNF, is
because that parentheses, for example, cannot be used in productions. For
example the production in Listing 6.1 must be massaged in order to make
SableCC accept it.

� �
FunctionCall : : = FunctionName ’(’ (Argument(’,’Argument) ∗) ?’)’

� �

Listing 6.1: FunctionCall as it is defined in the formal grammar from W3C

The first thing that must be changed when massaging the production in
Listing 6.1 is the non-terminals. Every non-terminal in SableCC must be
in lowercase, so non-terminals like FunctionCall must be changed into
functioncall. The next thing one must change is the “::=” which must be
substituted with a “=”. Now substitution of all terminals with tokens must
be done, as productions can only be defined by other productions or tokens.
Therefore the definition of “(” , “)”, and “,” must be defined as tokens, which
we call paren l, paren r, and comma. Now the last thing needed to be done
before making the grammar work with SableCC, is to eliminate the parenthe-
ses because, as mentioned before, one cannot use parentheses in productions.
In order to eliminate these parentheses another production must be created.
This production must express the same as (Argument(’,’Argument)*)?,
just without parentheses. This production is called argumentlist and can
either be an argument or an argument comma argumentlist. Listing 6.2
shows the complete functioncall production as it appears in the XPath
grammar file for SableCC in Appendix A.

� �
functioncall = functionname paren l argumentlist ? paren r

argumentlist = {argument} argument

| { argumentlist } argument comma argumentlist ;
� �

Listing 6.2: FunctionCall massaged into SableCC

Note that in Listing 6.2 we have specified two unique names in curly brackets.
These are necessary when there are more than one option in a production,
and they are used for naming methods and classes in the generated code.

44 XPath grammar in SableCC

6.2 XPath is not LALR Parsable

As mentioned earlier, the XPath grammar is not LALR(1) parsable. In this
section we will describe the problem and how we solved it.

6.2.1 The Problem

An LALR(1) parser looks ahead one token and must then solve everything
on the left to proceed. Let us look at the PredicateExpr in the following
expression:

Expression 6 //*[/**4]

(.)/**4 Everything has been parsed correctly up until this point. The /

is the star of an AbsoluteLocationPath and the parser can
proceed.

/(.)**4 The parser is now looking at a *. This can be parsed as a
multiplication sign or a wildcard for the
AbsoluteLocationPath

This ambiguity means that XPath is not LALR(1) parsable. Of course
we could use an LALR(k) parser, but a problem would arise if we had a
PredicateExpr like expression 7, where *k+1 should be read as k + 1 *.
In this case we would encounter exactly the same problem as before. Even
though we read k tokens ahead, we will still not be able to determine whether
the next token is a multiplication or wildcard sign.

Expression 7 //*[/*k+14]

6.2.2 The Solution

In order to correct the problem described in Section 6.2.1, there is an ap-
proach in Section 3.7 of the XPath standard [8]. It states:

“If there is a preceding token and the preceding token is not one
of @, ::, (, [, , or an Operator, then a * must be recognized as
a MultiplyOperator and an NCName must be recognized as an
OperatorName.”

6.2 XPath is not LALR Parsable 45

The problem has now changed from being parser related to being lexer re-
lated. There are now two solutions for changing the way the lexer goes about
its business to make the grammar compliant with Section 3.7 of the XPath
standard.

First Solution

As in SableCC, the first matching token is always returned. It would be
possible to add tokens to the grammar file like:

� �
Tokens

/∗
/
∗

� �

This would result in /* being read before any / and *. This should be done
for all of the tokens stated above. A large rewrite of the grammar would be
required for this solution and the grammar would be less readable, so another
solution is preferable.

Second Solution

As this is a lexer-related problem, perhaps the lexer could be tweaked so that
the grammar and the parser would not be changed in any way. The rule to
implement is pretty simple: The type of the preceding token determines which
token to be returned next. Listing 6.3 shows the unmodified code before the
new rule is applied. The rule can be seen in Java code in Listing 6.4 at
Line 562.

� �
547 Token new0(int line , int pos) { return new TMod(l ine , pos) ; }
548 Token new1(int line , int pos) { return new TSlash(l ine , pos) ; }
549 Token new2(int line , int pos) { return new TParenL(l ine , pos) ; }
550 Token new3(int line , int pos) { return new TParenR(l ine , pos) ; }
551 Token new4(int line , int pos) { return new TBracketL(l ine , pos) ; }
552 Token new5(int line , int pos) { return new TBracketR(l ine , pos) ; }
553 Token new6(int line , int pos) { return new TAt(l ine , pos) ; }
554 Token new7(int line , int pos) { return new TComma(l ine , pos) ; }
555 Token new8(int line , int pos) { return new TPipe(l ine , pos) ; }
556 Token new9(int line , int pos) { return new TOr(l ine , pos) ; }
557 Token new10(int line , int pos) { return new TAnd(l ine , pos) ; }
558 Token new11(int line , int pos) { return new TPlus(l ine , pos) ; }
559 Token new12(int line , int pos) { return new TMinus(l ine , pos) ; }
560 Token new13(int line , int pos) { return new TStar(l ine , pos) ; }
561 Token new14(int line , int pos) { return new TMultistar(l ine , pos)

; }
562 The list goes on

� �

Listing 6.3: The SableCC generated Lexer.java file

46 XPath grammar in SableCC

The following solution will only solve the problem for the * part, but the rest
is similar.

� �
547 private stat ic boolean last=fa l se ;
548
549 Token new0(int line , int pos) { last=true ; return new TMod(l ine ,

pos) ; }
550 Token new1(int line , int pos) { last=true ; return new TSlash(l ine ,

pos) ; }
551 Token new2(int line , int pos) { last=true ; return new TParenL(l ine

, pos) ; }
552 Token new3(int line , int pos) { last=fa l se ; return new TParenR(l ine

, pos) ; }
553 Token new4(int line , int pos) { last=true ; return new TBracketL(

l ine , pos) ; }
554 Token new5(int line , int pos) { last=fa l se ; return new TBracketR(

l ine , pos) ; }
555 Token new6(int line , int pos) { last=true ; return new TAt(l ine , pos

) ; }
556 Token new7(int line , int pos) { last=true ; return new TComma(l ine ,

pos) ; }
557 Token new8(int line , int pos) { last=true ; return new TPipe(l ine ,

pos) ; }
558 Token new9(int line , int pos) { last=true ; return new TOr(l ine , pos

) ; }
559 Token new10(int line , int pos) { last=true ; return new TAnd(l ine ,

pos) ; }
560 Token new11(int line , int pos) { last=true ; return new TPlus(l ine ,

pos) ; }
561 Token new12(int line , int pos) { last=true ; return new TMinus(l ine

, pos) ; }
562 Token new13(int line , int pos) { i f (! last) return new14(l ine , pos)

; last=fa l se ; return new TStar(l ine , pos) ; }
563 Token new14(int line , int pos) { last=true ; return new TMultistar(

l ine , pos) ; }
564 The list goes on

� �

Listing 6.4: The modified Lexer.java file

Now if the last token is not mod, / or any other tokens mentioned in the
quote in the beginning of Section 6.2.2, a MultiStar is returned.

6.3 Visitor Pattern

SableCC uses a slightly altered version of the visitor design pattern.

The visitor design pattern is used when doing the contextual analysis, for
checking whether scope and type rules are respected, and for doing the code
generation.

� �
1 Visitable () {
2 public void apply(Visitor) ;
3 }
4 public class Visitor {
5 AbstractSyntaxTree AST;

6.3 Visitor Pattern 47

6
7 AST. getFirstNode () . apply(this) ;
8
9 public void caseE1 (Visitable v)

10 {
11 //Execute r e l e van t code
12 v . getFirstChild . apply(this) ;
13 v . getSecondChild . apply(this) ;
14 }
15
16 public void caseE2 (Visitable v)
17 {
18 //Execute r e l e van t code
19 }
20
21 public void caseE4 (Visitable v)
22 {
23 //Execute r e l e van t code
24 v . getFirstChild . apply(this) ;
25 v . getSecondChild . apply(this) ;
26 }
27
28 public void caseE4 (Visitable v)
29 {
30 //Execute r e l e van t code
31 }
32
33 public void caseE5 (Visitable v)
34 {
35 //Execute r e l e van t code
36 }
37 }
38 public class E1 implements Visitable {
39 public void apply(Visitor v)
40 {
41 v . caseE1 (this) ;
42 }
43 }
44 public class E2 implements Visitable {
45 public void apply(Visitor v)
46 {
47 v . caseE2 (this) ;
48 }
49 }
50
51 // Clas se s E4 through E6 are i d e n t i c a l to
52 // E1 and E2 in implementation

� �

Listing 6.5: Example of the use of the Visitor Design Pattern

Each class in the AST implements the visitable interface, and therefore the
class has the apply() method (in other implementations of the visitor pat-
tern, the method is called accept()). The apply() method is invoked by
the visitor class, which traverses the AST. The apply() method then calls
the appropriate method in the visitor class, with the object this as argu-
ment. In that way it is possible to separate parsing and code generation by
having a visitor class doing each task. This makes it easy to replace the code

48 XPath grammar in SableCC

generator.

Figure 6.1: Visiting E1 Figure 6.2: Visiting E2

Figure 6.1 and 6.2 illustrate the principle of the visitor design pattern with a
simple example. The nodes in the tree all implement the visitable interface,
and has an apply() method. Visitor calls the apply() method on the E1

object, which calls the caseE1() method, with the object this as argument.
Actually, this can be simplified by using Java’s method overloading, and
letting all nodes call the same method with this as argument. In this case
the correct method is called, based on the type of the node object.

7Framework

This chapter is primarily intended for providing an overview of the frame-
work. It can be used for guidance and help when reading the implementation
section.

7.1 Components

This section describes the key components in our project, which are the
central class files in the design. These classes combined forms the core of the
XPath interpreter.

Figure 7.1 shows a sketch of the project framework, showing the interaction
between various classes.

7.1.1 The ASTAnalysisAdapter Class

This class is the core of the interpreter. This is the class that traverses the
abstract syntax tree using the visitor pattern described in Section 6.3, deter-
mining which axes and functions to use. This is also the class that handles
all calculations and selection of DOM nodes. Furthermore, the normaliza-
tion from abbreviated to unabbreviated syntax is done when traversing the
abstract syntax tree. All nodes are stored in node-sets which are also kept
track of in this class.

50 Framework

Figure 7.1: The project framework

7.1 Components 51

7.1.2 The DomTree Class

This class handles the transformation from an XML document into a DOM
tree, which is the tree that most of the other classes in the implementation
will work on.

7.1.3 The NodeSet Class

This class is a container for DOM nodes. It contains nodes from the DOM
tree in document order. It has a built-in iterator for iterating through the
nodes in the node-set. This class also handles all functions specified for
node-sets.

7.1.4 The AxisSpecifier Class

This class is primarily intended for internal use in the ASTAnalysisAdapter.
It has a method for each axisname in the grammar. The class handles all
selection of nodes selected by the axis and node test.

7.1.5 The Function Classes

There is a class for each type in XPath that handles functions related to
that specific type. These are BooleanFunctions, NumberFunctions, and
StringFunctions. These classes combined represent the most of the function
library as it is specified in the XPath standard.

7.1.6 The XPathInterpreter Class

This is the front-end of the interpreter. The XPathInterpreter class is
responsible for taking input, in the form of XPath expressions, from the
user, and returning the result.

7.1.7 The XPathGUI Class

This class is actually not part of the interpreter, and could easily be left out.
It is designed for pretty-printing the result of an XPath query. The class
converts the result into different formats like XML, HTML, and DOT. DOT
is part of the Graphviz package [1].

52 Framework

7.2 Class Diagram

Figure 7.2: The project framework

7.3 Design Specifications 53

Figure 7.3: The project framework

7.3 Design Specifications

In this section we want to describe the interface of the different classes de-
scribed in Section 7.1. This helps when programming in large groups, as
people will easily pick up on how to use these classes.

7.3.1 ASTAnalysisAdapter

The ASTAnalysisAdapter class extends the tree-walker, DepthFirstAdapter,
generated by SableCC. This class must be given as an argument in the
apply() method in order to start the traversel of the AST (see Listing 5.1).
This class takes in a NodeSet object containing the Document node (the root).
When the traversal finishes, the result can be obtained with the getResult()
method. If an error occurs while traversing the tree, an exception is thrown–
e.g., InvalidFunctionNameException, InvalidParameterException, and
ParameterMismatchException.

7.3.2 XPathInterpreter

This class initiates the whole interpretation process. It has a public method
called execute() which takes in the XPath expression and the XML docu-
ment file as arguments. This method returns the output according to what
has been specified in the setOutput() method, e.g. XML, HTML. The

54 Framework

execute() method is only used when having other classes have to use the
XPathInterpreter class. The XPathInterpreter class can also be used as
an independent program, as it has a Main() method. Therefore it can be used
in the command line by typing java XPathInterpreter "expression" "file".
The output is written to standard out in XML format.

7.3.3 NodeSet

When instantiating a NodeSet object, a DOM tree, in the form of a Document

object, must be given as an argument. This class is utilized for determin-
ing document order in the document. When adding a node, the addNode()

method is used. The class has its own built-in iterator, which includes the
methods nextNode(), previousNode(), and getLength(). Furthermore the
node-set functions, which are specified in the XPath standard, are imple-
mented in methods with the prefix “NSF ”.

7.3.4 AxisSpecifier

The methods of the AxisSpecifier class have simple interface. There is one
method for each axis with the same name as the axisname. All the methods
have the same syntax: The arguments are a node-set and a nodetest and the
return type is a NodeSet object. This NodeSet will contain the nodes which
have been selected by the axisspecifier.

III
Implementation, Test, and

Conclusion

8Implementation

Our implementation of the XPath interpreter has been concentrated around
the implementation of the following classes: NodeSet, AxisSpecifier, and
ASTAnalysisAdapter. These classes are of primary interest because they
contain the core of the implementation, whereas the remaining classes con-
sist of smaller “helper-functions” needed for full compliance to the XPath
standard. In the section below we will describe the core classes to clarify our
intent with regards to how the implementation was done.

8.1 NodeSet

There is an order of all nodes in a document called document order. This is
defined as the order in which the first character of each node contained within
the XML representation of the XML document appears. This means that
the root node will be the first node. Elements appear before their children.
Attributes and namespaces of an element appear before the children of the
element.

It states clearly in the XPath standard that a node-set is an unordered col-
lection of nodes without duplicates. But it is also defined that axes like
preceding and following must return all nodes, that are respectively before
and after the context node in document order. In order to maintain this doc-
ument order we have expanded the NodeSet class so that the stored nodes
will be kept in document order.

To implement this we have chosen to keep track of the of the document order
at all times in the NodeSet class. This has the consequence that when a copy
of our NodeSet class is instantiated, a DOM tree must be given as argument.

58 Implementation

In the NodeSet constructor the whole DOM tree is traversed recursively and
the nodes are stored in a hash map. Every node is stored in the hash map
using the Node object as the key, and an integer representing the number
of the node in document order as the value. Listing 8.1 shows the general
idea of a method that is called from the constructor that uses a depth-first
traversal to index the whole DOM tree.

In order to ensure that there are no duplicate nodes in the node-set, we have
implemented a test in the addNode() method that scans the current node-set
and determines whether an identical node is already in the node-set or not.
If an identical node is found, the new node is discarded.

� �
1 private void walkDocument (Node node , HashMap hm)
2 {
3 documentOrderPos++;
4 hm.put (node , new Integer (documentOrderPos)) ;
5
6 Node child = node . getFirstChild () ;
7
8 i f (child != null)
9 {

10 walkDocument (child , hm) ;
11 while ((child = child . getNextSibling ()) != null)
12 {
13 walkDocument (child , hm) ;
14 }
15 }
16 }

� �

Listing 8.1: This shows the general idea of how we traverse the tree to
determine document order

The walkDocument() method is called from the NodeSet constructor with the
document node and the hash map as arguments. The field documentOrderPos

is a static variable that keeps track of the document order. documentOrderPos
will increase every time the method is called, immediately after the node is
put into the hash map (Line 3-4). When instantiated, the NodeSet object
will have a complete index of the document order. When adding a node
to the node-set, the node is added to the linked list of the NodeSet object.
This linked list keeps the actual nodes in document order. It is necessary to
iterate through the list to find the correct position for the node.

The NodeSet class also implements reversed document order, which is needed
by some axisspecifiers. An example of this is the ancestor axis that must re-
turn the nodes in reversed document order. Therefore the methods
setDocumentOrder() and setReversedDocumentOrder() has been imple-
mented. When a node-set is returned from the method ancestor() in the
Axisspecifier class, it is set to reversed document order. Actually the

8.2 AxisSpecifier 59

nodes are still placed in document order in the linked list, it just reads the
node from the end of the linked list and backwards.

8.2 AxisSpecifier

When traversing the abstract syntax tree, a new node-set must be generated
every time an axisspecifier is encountered. In order to automate this process
we have constructed a class handling all these axisspecifiers, namely the
AxisSpecifier class. For each axisname there is a static method which
takes in a NodeSet object and a String object representing the nodetest as
arguments. The return types of the methods are NodeSet objects. These
NodeSet objects contain all the nodes that are the result of the selection.

When calling one of the methods, the argument NodeSet is iterated and
corresponding to the axixspecifier and node test a new node-set is selected.

Some of the axisspecifiers can be defined by other axisspecifiers. We have
made use of this when implementing axisspecifiers like descendant. Listing
8.2 shows how we implemented the descendant axis using child.

� �
1 public stat ic NodeSet descendant(NodeSet nodes , String nodetest)
2 {
3 NodeSet ns = new NodeSet (nodes .getDocument ()) ;
4 NodeSet children = new NodeSet (nodes .getDocument ()) ;
5 Node node ;
6
7 nodes . setDocumentOrder () ;
8 children = child (nodes , ”node () ”) ;
9 ns . join (children) ;

10 while (children .getLength () >0)
11 {
12 children = child (children , ”node () ”) ;
13 ns . join (children) ;
14 }
15 ns=nodeSetTest (ns , nodetest) ;
16 ns . setDocumentOrder () ;
17 return ns ;
18 }

� �

Listing 8.2: This shows how we implemented the descendant axis

When the method is called, a new node-set is selected containing all the
child-nodes of the current node in the node-set (Line 8). After this is done,
the descendant method is called with the new node-set as an argument (Line
12). This way the method iterates recursively through all the descendants of
a context node-set.

The descendant axisspecifier is used in the implementation of other axisspec-
ifiers such as descendant-or-self and following.

60 Implementation

8.3 ASTAnalysisAdapter

A tree-walker is constructed by SableCC to analyse the Abstract Syntax Tree.
We use this analysis to create an XPath Object tree by adding information
for every important node in the AST. A node is considered important if it
contains information that impacts the calculation an expression. We later use
this information to evaluate the XPath expression and determine the result.
This result is only calculated on request, when the getResult() method is
called.

Our XPath Object, or XObject for short, consists of a reference to its parent
and to each of its children. Furthermore the XObject contains an attribute
that represents the important node, whose information is needed. The most
important feature in the XObject is the eval() method. This method makes
it possible to recursively evaluate the XPath expression, which is represented
by the XObject.

By letting the tree-walker, in this case called a switch, traverse the abstract
syntax tree and build an XPath Object tree, we enable the program to eval-
uate predicates and expressions more than once. Opposed to calculating the
result while traversing the AST, this method of derivation allows for more
freedom in constructing XPath expressions. An example is the position()

function which returns the current position in the context node-set.

Expression 8 /descendant-or-self/child::AAA[position() = 1]

If Expression 8 is to be evaluated correctly, the predicate will have to be eval-
uated for each node in the node-set corresponding to the node-set returned
by the axes, which is seen in Expression 9.

Expression 9 /descendant-or-self/child::AAA

By building an XObject with just enough information to evaluate the ex-
pression, we can dynamically calculate the predicate for each node. In the
example above the predicate [position() = 1] will evaluate to true only
for the node with the specific position of 1, thus only this node is added to
the final result.

Every analysis involves a number of stacks to keep track of the results.

• axisStack

• nodeSetStack

8.4 Documentation 61

• exprStack

• xStack

The nodeSetStack is used to keep track of each node-set generated and
manipulated. AxisSpecifiers and node tests used to determine these node-sets
are stored in the axisStack. The exprStack holds objects of the ExprObject
type, which are containers for the root node of an XPath Object tree. The
most important stack is the xStack. This is the primary storage, and where
every computation result is stored along the recursive evaluation.

8.4 Documentation

In order to make it easier for people using the different components of the
interpreter, documentation has been made for methods and classes. As java
is the choice of compiler it comes with a tool for automating the process
of making documentation. This tool is called Javadoc[20] and it generates
HTML-based documentation from the java source files.

8.5 Unimplemented features

As the implementation of DOM that is used for the interpreter is DOM level
1[11], there is a node-set operation that is not implemented. The method in
question is id(), which was not introduced until DOM level 2, and therefore
not available. For this reason the method has been left out of the implemen-
tation of YAXi, as we decided that implementing this feature would be too
time consuming.

9Test
Writing tests is a very important yet often misunderstood task. Tests as-
sists the developers in verifying bugs and/or patches. Writing the perfect
test cases for specific uses is extremely vital, but this is often a very time
consuming task and sometimes quite difficult. It may seem like a lot of work,
but writing tests will actually save development time.

9.1 Test Strategy

The purpose of this section is to describe how the tests of our interpreter
were performed, and to argue for the testprocedure. The tests of YAXi were
divided into three parts. The description of the tests can be found in Section
9.5. The tests were performed with a tool we developed, which is described
later in this section.

Testing the XPath interpreter involves testing if a given expression evaluates
as described in the XPath standard.

For testing purposes we developed a graphical user interface and a command
line-based tool.

The graphical tool is used for testing one XPath expression at a time, and
the result can be presented in six different ways:

XML Shows the part of the original XML document, which has been se-
lected with the XPath expression, as a new XML document.

DOT-report Shows the generated DOT-file.

64 Test

1<1 & false

concat("titi","toto") & tititoto

normalize-space("wer den ") & wer den

Figure 9.1: Example of an input file

PNG Shows the whole XML document as a tree with the selected parts
emphasized.

DOT-test Shows the whole XML document as a tree with the selected parts
emphasized with colors.

PostScript Generates a PostScript-file for use in this report. The XML
document is shown as a tree with the selected parts emphasized. The
file is generated in grayscale.

HTML Shows the whole XML document, with the selected parts marked
with the color red.

The command line tool is practical for testing several XPath expressions at a
time. It reads from a file which contains the expressions to test in the XPath
interpreter along with the results which the expression should return. The
file has a format which makes it easy to include in this report. An example
of such a file, with simple expressions, can be seen in figure 9.1.

The testing will be done using the method illustrated in figure 9.2. A line
is read from the input file, and the expression is then evaluated. The result
from the XPath interpreter is compared to the expected result. When all
expressions in the input file have been evaluated, the result is printed to
the screen as shown in figure 9.3. Each expression is marked with either
“Correct” or “Incorrect”.

The expressions in the input file have been chosen to make sure that the the
whole XPath interpreter is tested and insures that the interpreter accepts any
well-formed XPath expression and that it returns the correct result. Some
of the test data may look redundant, e.g. 1 > 0 and 0 < 1, which should
both evaluate to true. Logically the two comparisons are equal, but both
possibilities have to be tested because they are not evaluated in the same
way in the XPath interpreter. Therefore a lot of expressions that look the
same have to be tested.

9.1 Test Strategy 65

Figure 9.2: Testing cycle

Input to test tool
//*/namespace::*[position()=1]

Output from test tool
Correct

Figure 9.3: The input and output of the test tool used in the test phase

66 Test

9.2 Test Examples

Our test consists of several hundred expressions and their expected results
written in a file. All test results can be seen on the homepage at
“www.cs.auc.dk/∼fr0/”. To insure that the node-set functions last() and
position() perform as described in the XPath standard, a series of expres-
sions containing those functions were used to cross-check the functions.

In the following example all whitespaces have been removed from the XML
output of YAXi.

Input
count(//E9/descendant-or-self::*)

Output
<number>5.0</number>

Figure 9.4: An expression and its result

With the knowledge of the number of nodes in the node-set, the nodeset
position() function can be used to select the fifth node in the node-set.

Input
//E9/descendant-or-self::*[position()=5]

Output
<nodeset><Element><E12/></Element></nodeset>

Figure 9.5: An expression and its result

Now the idea is to use the node-set function last() to select the last node
in the node-set, and then compare it to the XML output. If the outputs
of Figure 9.5 and Figure 9.6 are the same, then the last() function on the
node-set works as expected.

Input
//E9/descendant-or-self::*[last()]

Output
<nodeset><Element><E12/></Element></nodeset>

Figure 9.6: An expression and its result

9.3 Test of Design Criteria 67

9.3 Test of Design Criteria

The main design criteria was to implement the whole XPath standard. To
test this, we had to develop test material which represented as much as
possible of the XPath standard. We performed extensive testing by executing
several hundreds of expressions and evaluating the results according to the
described test strategy. The test of YAXi has been divided into three parts.
Tests and their results can be found the homepage specified earlier in this
chapter.

The first test Simple calculations and function calls which can be per-
formed without the use of a node-set are tested.

The second test A location step without predicates is tested.

The third test This test adds the predicate to the location path. The
test has the purpose to ensure that the combining of function calls,
operators and different parts of a location step works.

The reason for dividing the test of YAXi into three parts was to increase the
understanding of a given error found during the tests. The reason for picking
this procedure was to ensure that a mistake in a function call or one of the
operators would not affect the result of later testing of the location path.

9.4 Evaluation of Test

Testing is an important part of our project, considering we have decided to
implement the whole XPath standard. Therefore it is essential to prepare a
set of tests which test all parts of an XPath interpreter.

During the test period we focused on expressions which did not yield the
expected result. Each time we reconsidered the expected result, and found
that sometimes we had expected an incorrect result. Other tests returned
the expected result, and found the expression giving an incorrect result. We
used these observations to correct the errors in the code that caused the
interpreter to fail. After changing the code, the tests were carried out again.
All tests were carried out in each iteration in the testing cycle, to ensure we
did not make changes to the code, which would result in incorrect results.

Using the test method as described, we have ensured that our XPath inter-
preter generates correct results according to the XPath specification. We
have also shown that we have met the demands of the design criteria.

68 Test

9.5 Test Conclusion

During the tests the errors listed below were found. These errors have now
been corrected. The tests and results can be found on the homepage specified
at the beginning of this chapter.

• Following-sibling axis executes an infinite loop.

• The boolean function lang() accepts a node and a string as arguments,
it should only have taken a string.

• The backwards axis did not work because of an error in the nodeset.

• The equality comparison between strings always returned true

• Negative numbers were handled as positive numbers. 1 + −2 would
evaluate to 3

First test More than 250 tests have been performed. All tests met the
expected results. This proves that YAXi is able to evaluate simple
calculations and function calls.

Second test Each of the axes have been tested twice, each with a different
starting point. Similar to the axis, the node test have also been tested.
Both the axes and the node test work as expected.

third test This tests if YAXi is able to handle one or more predicates.
In the expressions both function calls and calculations were mixed to
ensure that YAXi was able to deal with all kinds of expressions in the
predicates. 20 tests were performed, with as many as four predicates,
and YAXi performed as expected.

10Study Report

10.1 Study Report

The purpose of this section of the report is to reflect upon the work methods
used during the project period. This part of the report is not to be consid-
dered scientific material, but rather a guide to the cencor and supervisor as
to how the project has come to be.

10.2 Analysis

At the first stage of our project we spent a relatively long time evaluating
technologies and reading the XPath standard. As the focus of this project is
to implement an already known standard, we saw the understanding and dis-
cussion of unclear parts of the standard as a very important part of this stage,
hence the relative large amounts of time allocated to this task. When choos-
ing a compiler compiler we had to determine which technology we wanted
to make use of, i.e. if we wanted to use an LL(1) or an LALR(1) parser. In
the end we decided that SableCC was the best choice. At this stage, we also
had to discuss the different APIs for XML parsing and which programming
language to choose for implementing the interpreter.

10.3 Design

The first major design issue was massaging the grammar. This proved to be
a slow process due to very lacking documentation on SableCC. Because the

70 Study Report

grammar is such an important part of the project, the whole group wanted
as much insight in this process as possible, so everyone participated in this
process. It proved to be an even more complicated process than we had
assumed, as the grammar turned out not to be LALR(1) parsable, which
had to be solved (see Section 6.2).

At this stage we also had to define the framework of our implementation,
which was rather easy, as the XPath standard specifies many of the compo-
nents of an implementation. At the end of the design stage we had worked
out a document specifying the interfaces of all the components.

10.4 Implementation

As the interface of all components had been specified in the design stage of the
project, the implementation part of most of the components was relatively
straight-forward.

The programming process itself was split into subtasks:

NodeSet The task was to implement the node-set as it is described in the
XPath standard, including all node-set functions

ASTAnalysisAdapter The task was to implement the tree-walker that
walks the abstract syntax tree, performing the calculations and keeping
track of the node-sets.

Axisspecifier The task was to implement the axisspecifiers as they are spec-
ified in the XPath standard.

Function libary The task was to implement the whole function library in-
cluding the booleanfunctions, numberfunctions and stringfunctions.

GUI/front end Implementation of the front end of the interpreter. This
task also include implementing a GUI for the interpreter.

As our group consists of seven people, the possibility of making parallel
programming processes is present. Therefore we split our group into tree
small subgroups which take care of their own subtask.

This approach has the advantage that there quickly is progress in the imple-
mentation progress, which means that the components can be tested together
rather early, and eventual errors in the framework can be detected in the be-
ginning of this stage. Another advantage with this approach is that members

10.5 Testing 71

of the subgroup can supply each other when problems occur. One of the dis-
advantages with this approach is that it is only the subgroup responsible for a
component who has insight in this component. In order to reduce this prob-
lem, we used the built-in feature in java called Javadoc in order to document
the functionality and interface of the different components.

10.5 Testing

As the focus is to implement a known standard, a test process is important
to determine whether all features of XPath has been implemented correctly.

We performed white and black box testing during the development, because
we used a hard coding approach during this project. Everything uploaded to
our CVS repository must compile without errors. We did this to make sure
people could count on work from group members to be correct and usable.

Some of the testing was done while developing, most of it being white box
tests. We made a lot of effort ensuring the correctness of the results of
the internal functions. Once the program was near completion we began
blackbox testing with querries we knew the results of. This should give us
an idea about the correctness of the program.

10.6 Conclusion

Looking back at the project as a whole, we conclude that it has progressed
satisfactorily, even though some stages of the project development took a
lot longer than initially scheduled. Especially the massaging of the grammar
turned out to be more time demanding than expected. The implementation
also demanded a lot of attention, but as we split the group into subgroups
this process was completed relatively painlessly. We found this split into
subgroups to be a very useful style of programming, so we continued to use
this throughout the whole writing process.

11Conclusion

11.1 Further development

Even though the whole XPath standard has been implement, there are still
many things that could be done in order to improve on the implementation.
One of the things that one could improve on is the execution time. For exam-
ple the task of maintaining document order in a node-set is rather expensive.
Actually, the time complexity in the worst case when adding n nodes to the
node-set is O(n!). It could have been implemented using for example, a quick
sort, which has the time complexity of O(n ∗ log(n)). This would be a big
improvement on the execution time. As execution time has not been the
main focus of this project, there are many other places where a rewrite of
the code could successfully improve on the execution speed.

Looking at further development, this project could be the first step towards
implementing languages like XSLT[9] or XQuery[13], which both extend the
functionality of the XPath language.

11.2 Conclusion

As we have shown throughout this project, we have developed a clear under-
standing of building a useful interpreter as well as an understanding of web
technologies like XML, DOM, and XPath.

We have managed to implement a full grown XPath 1.0 interpreter, with the
only exception beeing the function id(), that is not supported by the DOM
level 1 API, which is used in YAXi.

74 Conclusion

The development of the interpreter was aided by using the tool SableCC,
which has increased the flexibility of the development of the interpreter. The
formal XPath grammar did require some massaging to transform it into the
EBNF required by SableCC, including a small rewrite of the lexer, while still
maintaining a fully compatible language syntax.

There has been added a small, but yet powerful, improvement to the XPath
function core: rand(), which enables non-deterministic selection of nodes.

We have used the test chapter to show, that we have built a fully working
implementation of the XPath language. Perhaps speed could be improved
on, but in many real-life applications, like RSS-feeds, speed is no problem,
because of other overheads.

In overall we can conclude that we have managed to develop an XPath inter-
preter, YAXi, that conforms to the requirements specified by both the XPath
standard as well as our own requirements.

Bibliography

[1] AT&T. Graphviz. http://www.research.att.com/sw/tools/graphviz/,
2003.

[2] Ben Berck. Creating efficient msxml applications.
http://www.xml.com/pub/a/2002/03/06/efficient.html, 2002.

[3] Elliot Joel Berk and C. Scott Ananian. Jlex: A lexical analyzer generator
for java(tm). http://www.cs.princeton.edu/ appel/modern/java/jLex/,
2003.

[4] David A Watt & Deryck F Brown. Programming lanuage processors in
java, page 118-124, 2000.

[5] David A Watt & Deryck F Brown. Programming lanuage processors in
java, page 83-93, 2000.

[6] David Brownell. About sax. http://sax.sourceforge.net/.

[7] World Wide Web consortium. Html 4.01 specification.
http://www.w3.org/TR/html401/, 1999.

[8] World Wide Web consortium. Xml path language (xpath) version 1.0.
http://www.w3.org/TR/xpath, 1999.

[9] World Wide Web consortium. Xsl transformations (xslt) version 1.0.
http://www.w3.org/TR/xslt, 1999.

[10] World Wide Web consortium. Xml pointer language (xpointer).
http://www.w3.org/XML/Linking, 2000.

[11] World Wide Web consortium. W3c document object model.
http://www.w3.org/DOM, 2002.

[12] World Wide Web Consortium. W3c in 7 points.
http://www.w3.org/Consortium/Points/, 2003.

76 BIBLIOGRAPHY

[13] World Wide Web consortium. Xquery 1.0: An xml query language.
http://www.w3.org/TR/xquery/, 2003.

[14] World Wide Web Consortium. Extensible markup language (xml)
1.0 (third edition). http://www.w3.org/TR/2004/REC-xml-20040204/,
2004.

[15] International Organization for Standardization (ISO). Iso14977.
http://www.cl.cam.ac.uk/ mgk25/iso-14977.pdf, 1996.

[16] Etienne Gagnon. Sablecc, an object-oriented compiler framework.
http://www.sablecc.org/thesis/thesis.php, School of Computer Science
McGill University, Montreal, 1998.

[17] Lars Marius Garshol. Bnf and ebnf: What are they and how do they
work? http://www.garshol.priv.no/download/text/bnf.html, 2003.

[18] Stephen C. Johnson. Yacc: Yet another compiler-compiler.
http://www.cs.utexas.edu/users/novak/yaccpaper.htm, 1996.

[19] Sun Microsystems. Java api for xml processing (jaxp) version x.xx.
http://java.sun.com/xml/jaxp.

[20] Sun Microsystems. Ieee standard for binary folating-point arithmetic.
http://java.sun.com/j2se/javadoc/, 1994-2004.

[21] Institute of Electrical and Electronics Engineers. Ieee standard for bi-
nary folating-point arithmetic, 1985.

[22] PerfectXML. Xml path language (xpath).
http://www.perfectxml.com/ph/xml-htp 11.pdf, 2002.

[23] Erik T. Ray. Learning XML. O’REILLY, 2001.

[24] C. Scott Ananian Scott Hudson, Frank Flannery. Cup parser genera-
tor for java. http://www.cs.princeton.edu/ appel/modern/java/CUP/,
1999.

[25] Michael Sipser. Introduction to the theory of computation, 1997.

All URLs are valid as of May 24th.

IV
Appendices

AXPath Grammar
� �

1 Helpers

2 l etter = [’A’ . . ’Z’] | [’a’ . . ’z’] | [0 x7F . . 0xFF] ;
3 digit = [’0’ . . ’9’] ;
4 a l l = [0 . . 0xFF] ;
5
6
7 Tokens

8 mod = ’mod ’ ;
9 slash = ’/’ ;

10 paren l = ’(’ ;
11 paren r = ’)’ ;
12 bracket l = ’[’ ;
13 bracket r = ’]’ ;
14 at = ’@’ ;
15 comma = ’,’ ;
16 pipe = ’|’ ;
17 or = ’or’ ;
18 and = ’and ’ ;
19 plus = ’+’ ;
20 minus = ’-’ ;
21 star = ’*’ ;
22 multistar = ’*’ ;
23 div = ’div ’ ;
24 dollar = ’$’ ;
25 blank = 1 3 | 1 0 | 9 | ’ ’ ;
26
27 abbreviatedstep = ’.’ | ’..’ ;
28
29 nodetype = ’comment ’

30 | ’text ’

31 | ’node ’ ;
32
33 processing instruction = ’processing -instruction ’ ;
34
35 axisname = ’ancestor ’

36 | ’ancestor -or-self’

37 | ’attribute ’

38 | ’child ’

39 | ’descendant ’

40 | ’descendant -or -self ’

41 | ’following ’

80 XPath Grammar

42 | ’following -sibling ’

43 | ’namespace ’

44 | ’parent ’

45 | ’preceding ’

46 | ’preceding -sibling ’

47 | ’self ’ ;
48
49 colon = ’:’ ;
50 underscore = ’_’ ;
51 doublecolon = ’::’ ;
52 doubleslash = ’//’ ;
53 equality = ’=’ | ’!=’ ;
54 relation = ’<=’ | ’>=’ | ’<’ | ’>’ ;
55
56 l i t e r a l = ’’’ ([a l l − ’’’]) ∗ ’’’ | ’"’ ([a l l − ’"’]) ∗ ’"’ ;
57 number = digit + (’.’ digit+) ? | ’.’ digit+;
58
59 ncname = (l etter | ’_’) (l etter | ’_’ | digit | ’.’ | ’-’) ∗ ;
60
61 Ignored Tokens

62 blank ;
63 Productions

64 start = expr ;
65
66 // Locat ion Paths
67 locationpath = { relativelocationpath} relativelocationpath

68 | { absolutelocationpath } absolutelocationpath ;
69
70 absolutelocationpath = { abbreviatedabsolutelocationpath}

abbreviatedabsolutelocationpath

71 | { relativelocationpath} slash

relativelocationpath ? ;
72
73
74 relativelocationpath = { abbreviatedrelativelocationpathslash}

abbreviatedrelativelocationpathslash ? stepslash ∗ step

75 | { abbreviatedrelativelocationpath}
abbreviatedrelativelocationpath ;

76
77 abbreviatedrelativelocationpathslash =

abbreviatedrelativelocationpath slash ;
78
79 stepslash = step slash ;
80
81 // Locat ion s t ep s
82 step = { axisspec i f ier } axisspec i f ier nodetest predicate ∗
83 | { abbreviatedstep } abbreviatedstep ;
84
85 axisspec i f ier = {axisname}axisname doublecolon

86 | { abbreviatedaxisspecifier}
abbreviatedaxisspecifier ;

87
88 //Axes
89
90 nodetest = {nametest} nametest

91 | { nodetype } nodetype paren l paren r

92 | { processing } processing instruction paren l l i t e ra l

? paren r ;
93
94 predicate = bracket l predicateexpr bracket r ;
95
96 predicateexpr = expr ;

81

97
98 // abb r ev i a t i on s
99

100 abbreviatedabsolutelocationpath = doubleslash

relativelocationpath ;
101
102 abbreviatedrelativelocationpath = relativelocationpath

doubleslash step ;
103
104 abbreviatedaxisspecifier = at ? ;
105
106 expr = orexpr ;
107
108 primaryexpr = { variablereference } variablereference

109 | { expr } paren l expr paren r

110 | { l i t e r a l } l i t e r a l

111 | {number} number

112 | { functioncall } functioncall ;
113
114 functioncall = functionname paren l argumentlist ? paren r ;
115
116 argumentlist = {argument} argument

117 | { argumentlist } argument comma argumentlist ;
118
119 argument = expr ;
120
121 unionexpr = {pathexpr } pathexpr | { unionexpr } unionexpr pipe

pathexpr ;
122
123 pathexpr = { locationpath } locationpath

124 | { f i lterexpr } f i lterexpr

125 | { f i lterexprslashrelativelocationpath } f i lterexpr

slash relativelocationpath

126 | { filterexprdoubleslashrelativelocationpath}
f i lterexpr doubleslash relativelocationpath ;

127
128 f i lterexpr = {primaryexpr} primaryexpr

129 | { f i lterexpr } f i lterexpr predicate ;
130
131 orexpr = {and} andexpr

132 | {or } orexpr or andexpr ;
133
134 andexpr = {equal } equalityexpr

135 | { and} andexpr and equalityexpr ;
136
137 equalityexpr = { relationalexpr} relationalexpr

138 | { equalityexpr } equalityexpr equality relationalexpr ;
139
140 relationalexpr = { additiveexpr} additiveexpr

141 | { relationalexpr} relationalexpr relation additiveexpr

;
142
143 additiveexpr = {multiplicativeexpr } multiplicativeexpr

144 | { addplusexpr} additiveexpr plus multiplicativeexpr

145 | { addminusexpr } additiveexpr minus multiplicativeexpr ;
146
147
148 multiplicativeexpr = {unaryexpr} unaryexpr

149 | { multitimeseexpr} multiplicativeexpr multistar

unaryexpr

150 | {multimodexpr } multiplicativeexpr mod unaryexpr

151 | { multidivexpr} multiplicativeexpr div unaryexpr ;

82 XPath Grammar

152
153 unaryexpr = minus∗ unionexpr ;
154
155 // Expr e s s i onLex i c a lS t ru c tu re
156 nametest = { star } star

157 | {ncname} ncname colon star

158 | {qname} qname ;
159
160 functionname = qname ;
161
162 qname = ncnamecolon? ncname ;
163 ncnamecolon = ncname colon ;
164
165 variablereference = dollar qname ;

� �

BFormal XPath
Grammar

Location Path

[1] LocationPath ::= RelationalLocationPath
| AbsoluteLocationPath

[2] AbsoluteLocationPath ::= ’/’ RelativeLocationPath?
| AbbreviatedAbsoluteLocationPath

[3] RelativeLocationPath ::= Step
| RelativeLocationPath ’/’ Step
| AbbreviatedRelativeLocationPath

[4] Step ::= AxisSpecifier NodeTest Predicate*
| AbbreviatedStep

[5] AxisSpecifier ::= AxisName ’::’
| AbbreviatedAxisSpecifier

84 Formal XPath Grammar

Axes

[6] AxisName ::= ’ancestor’
| ’ancestor-or-self’
| ’attribute’
| ’child’
| ’descendant’
| ’descendant-or-self’
| ’following’
| ’following-sibling’
| ’namespace’
| ’parent’
| ’preceding’
| ’preceding-sibling’
| ’self’

NodeTest

[7] NodeTest ::= NameTest
| NodeType ’(’ ’)’
| ’processing-instruction’ ’(’ Literal ’)’

Predicates

[8] Predicate ::= ’[’ PredicateExpr ’]’

[9] PredicateExpr ::= Expr

Abbreviated Syntax

[10] AbbreviatedAbsoluteLocationPath ::= ’//’ RelativeLocationPath

[11] AbbreviatedRelativeLocationPath ::= RelativeLocationPath ’//’ Step

[12] AbbreviatedStep ::= ’.’ | ’..’

[13] AbbreviatedAxisSpecifier ::= ’@’?

85

Expressions

[14] Expr ::= OrExpr

[15] PrimaryExpr ::= VariableReference
| ’(’ Expr ’)’
| Literal
| Number
| FunctionCall

Function Calls

[16] FunctionCall ::= FunctionName ’(’(Argument(’,’ Argument)*)? ’)’

[17] Argument ::= Expr

[18] UnionExpr ::= PathExpr
| UnionExpr ’|’ PathExpr

[19] PathExpr ::= LocationPath
| FilterExpr
| FilterExpr ’/’ RelativeLocationPath
| FilterExpr ’//’ RelativeLocationPath

[20] FilterExpr ::= PrimaryExpr
| FilterExpr Predicate

Booleans

[21] OrExpr ::= AndExpr
| OrExpr ’or’ AndExpr

[22] AndExpr ::= EqualityExpr
| AndExpr ’and’ EqualityExpr

[23] EqualityExpr ::= RelationalExpr
| EqualityExpr ’=’ RelationalExpr
| EqualityExpr ’ !=’ RelationalExpr

[24] RelationalExpr ::= AdditiveExpr
| RelationalExpr ’<’ AdditiveExpr
| RelationalExpr ’>’ AdditiveExpr
| RelationalExpr ’<=’ AdditiveExpr
| RelationalExpr ’>=’ AdditiveExpr

86 Formal XPath Grammar

Numbers

[25] AdditiveExpr ::= MultiplicativeExpr
| AdditiveExpr ’+’ MultiplicativeExpr
| AdditiveExpr ’-’ MultiplicativeExpr

[26] MultiplicativeExpr ::= UnaryExpr
| MultiplicativeExpr MultiplyOperator UnaryExpr
| MultiplicativeExpr ’div’ UnaryExpr
| MultiplicativeExpr ’mod’ UnaryExpr

[27] UnaryExpr ::= UnionExpr
| ’-’ UnaryExpr

Strings

[28] ExprToken ::= ’(’ | ’)’ | ’[’ | ’]’
| ’.’ | ’..’ | ’@’ | ’,’ | ’::’
| NameTest
| NodeType
| Operator
| FunctionName
| AxisName
| Literal
| Number
| VariableReference

[29] Literal ::= ’”’ [ˆ ”]* ’”’
| ”’” [ˆ ”]* ”’”

[30] Number ::= Digits (’.’ Digits?)?
| ’.’ Digits

[31] Digits ::= [0-9]+

87

[32] Operator ::= OperatorName
| MultiplyOperator
| ’/’
| ’//’
| ’|’
| ’+’
| ’-’
| ’=’
| ’ !=’
| ’<’
| ’<=’
| ’>’
| ’>=’

[33] OperatorName ::= ’and’ | ’or’ | ’mod’ | ’div’

[34] MultiplyOperator ::= ’*’

[35] FunctionName ::= QName - NodeType

[36] VariableReference ::= ’$’ QName

[37] NameTest ::= ’*’
| NCName ’:’ ’*’
| QName

[38] NodeType ::= ’comment’
| ’text’
| ’processing-instruction’
| ’node’

[39] ExprWhitespace ::= S

