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Abstract

Data warehousing is a common tool for decision support, which in order to achieve high precision
must hold masses of historical data. In this paper, we present a method for reducing the size of the
data warehouse. The method describes how the attributes should be split into three different groups
and how the schema of the data warehouse should be changed. How the attributes are represented
in the warehouse is determined by the attribute type. The size reduction of the warehouse is done
using differential compression and re-use of patterns. We also show how the method is carried out
on real GPS data collected by busses in public transportation. This will be done on a Microsoft
SQL-Server 2000. Finally a set of performance tests are carried out and the results are compared.
The main conclusions of this article are that space can almost always be saved and sometimes
better query performance can be achieved.

1 Introduction

A data warehouse is a collection of historical data,
which can be used for decision support. The data ware-
house is a denormalized database where the tables typ-
ically are stored in a star schema [Kim02]. The main
purpose of the star schema is to ease the understanding
of how data is related. Using the star schema reduces
the amount of joins needed to perform a query, which
leads to simpler queries. For the sake of simplicity in
the queries the normalized schema of the data ware-
house is sacrificed. Over time the data in the data
warehouse will increase to take up huge amounts of
disk space. To prevent this, data compression can be
applied, which is the topic of this paper.

Compression comes in two forms, reversible and
non-reversible. Reversible compression means that the
original data can be fully reconstructed after it has

been compressed whereas non-reversible data cannot
[RH93]. Non-reversible compression is not always so
desirable because it might reduce the number of useful
queries that can be performed on the data.

When data in a database is to be saved on a disk,
compression can be applied in two different places. Ei-
ther the compression is handled directly by the data-
base management systems (DBMS) or it is done at
query level. When doing compression at query level,
it is DBMS independent.

The aim of this article is to describe a method of
reversible and semantic independent compression of
data in a data warehouse while preserving the query
processing speed from the uncompressed warehouse.
The compression/decompression is done at query level
to ensure that the method can be used across different
DBMSs. Preserving the query speed can possibly be
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achieved by reducing the amount of disk I/O through
compression. Use of CPU time instead of disk space
can be even more important in the future if the current
improvements in CPU and disk speeds continue. CPU
speed is improving faster than disk speed. Therefore
it is useful to minimize disk I/O, even though the cost
is more CPU computations [PRWS00, Ses95].

This paper is structured as follows. In Section 2 re-
lated work within the areas of compression and data-
bases is presented and compared to our work. An ex-
ample which will be used throughout this paper is pre-
sented in Section 3. Section 4 introduces the three
types of attributes. Section 5 establishes a general
model for reducing the size of a data warehouse us-
ing differential compression and in which situations the
model can be applied. In Section 6 the actual com-
pression method is presented and it is discussed how
it behaves on the three attribute types. The handling
of decompression is described in Section 7. General
rewrite rules for querying the compressed warehouse
is formalized in Section 8. In Section 9 the model is
applied to data collected by GPS devices located on
busses. In Section 10 a number of performance tests
are described and the results are presented. Finally
Section 11 concludes on the method described in this
paper.

2 Related Work

Databases are usually not compressed because tradi-
tional data compression techniques need large data
chunks to be efficient [RH93]. Because of this, random
access to only small parts of the data is not possible
to execute within reasonable time[Kor01]. This is be-
cause large amounts of data has to be decompressed
although only a small part of the data is needed to
perform the query.

Another approach to compression in databases is to
compress the result of a query [Che02]. This is useful
in situations where the bandwidth is limited or when
the client receiving the query result has limited mem-
ory. This approach does not directly improve on the
execution time but reduces the network overhead.

In [GRDT99] a strategy to make data warehouses
smaller and faster is proposed. This is done by re-

building the index used in the database. This re-
quires changes in the DBMS, and therefore moving the
method from one DBMS to another is a complicated
process.

[Ses95] presents a number of different compression
methods and experiments. It claims that compression
in databases always should be used, not only to reduce
the amount of disk space, but also to achieve better
performance, due to of the reduced number disk I/Os.

[Riz03] proposes a way of optimizing the I/O in a
data warehouse through planning. It is an investiga-
tion of how to distribute tables and indexes over sev-
eral physical disks. Different disk layouts are shown
and compared to each other.

In contrast, our work is different in the way that it
is independent of the DBMS on which the method is
carried out. Our method can be carried out on top
of any DBMS as it only changes the schema of the
warehouse. Therefore the method can be used on any
DBMS and no changes to this are required.

3 Example

Imagine a simple warehouse of real-time bus data col-
lected by busses at numerous lines and journeys. Data
is obtained at specific points on the line by GPS de-
vices and stored in the warehouse[Fjä03]. Each tuple
in the Busdata table corresponds to exactly one re-
ceived GPS record from a specific bus at a specific line
at a specific journey. In order to determine the delay
relative to the bus schedule the Busdata table holds
both the actual arrival time and the target arrival time.

The warehouse has a number of dimension tables
that contain additional information related to the
fact table (Busdata). The attributes with the suffix
DimPK are foreign keys to related dimension tables
and the attributes with the suffix DD are degenerated
dimensions. The schema of the warehouse can be seen
in Figure 1.

The dimension tables are filled beforehand with rela-
tively static data, for example the LineDim dimension
contains information about all bus lines, in this case it
contains the name of the line.

Such a warehouse can for example be used for exam-
ining how many per cent of the points where the delay
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LineDim
PK LineDimPK

Name

TargetArrivalDim
PK TargetArrivalDimPK

Time

ActualArrivalDim
PK ActualArrivalDimPK

Time

Busdata
PK LineDimPK
PK TargetArrivalDimPK
PK ActualArrivalDimPK
PK PointDD
PK JourneyNoDD
PK DelayInSeconds

Figure 1: The standard warehouse schema

is larger than three minutes, to determine whether or
not the busses are mainly on schedule or whether the
schedule should be changed. A query doing this selec-
tion is shown in Listing 1.

1 SELECT
2 (SELECT COUNT(∗ )
3 FROM Busdata
4 WHERE DelayInSeconds > 180
5 /
6 SELECT COUNT(∗ )
7 FROM Busdata ) ∗100
8 AS Delay

Listing 1: Selecting percentage of points that are
delayed more than 3 minutes

Lines 2-4 select the number of tuples in the fact table
where the delay is larger than 180 seconds. Lines 6-7
selects the actual number of tuples in the warehouse.
Finally the results from the two sub-selects are divided
in order to get the percentage of delays.

The example in Listing 1 will be used throughout
this article.

4 Attribute Types

In order to use the compression method described in
this article one must first of all understand these three
new attribute types for the fact table. We will use the
simple warehouse from Section 3 as an example.

4.1 Structural

A structural attribute in the Busdata table could for
example be the LimeDimPK attribute that binds in-
formation together in the sense that tuples with the
same unique LineDimPK are related. Another exam-
ple could be the JourneyNoDD attribute. V (S, r) in-
dicates the number of distinct values of S in the re-
lation r. One could say that V (S, r) [Sun01], where
S is the set of structural attributes in this case
{LineDimPK,JourneyNoDD} and r is the fact table, in
this case Busdata, should return a low number, at
least compared to other combinations of attributes.

These attributes would typically be queried with
both equality and inequality in the WHERE clause and
can be used in the GROUP BY clause.

4.2 Accumulative

Accumulative attributes are attributes that should not
be used in the WHERE clause or at least only where
the operators ≥ or > are used. Accumulative at-
tributes could typically be dates where a query could
be: “in the last month what is the average delay”. In
the Busdata table accumulative attributes could be
TargetArrivalDimPK and ActualArrivalDimPK. As
the name of the attribute type implies these are well
suited for attributes that are mostly used for accumu-
lation like the one in Listing 2.

1 SELECT AVG( TargetArrivalDimPK−
ActualArrivalDimPK ) FROM . . .

Listing 2: A simple aggregating query

4.3 Critical

These attributes can be seen as specializations of the
accumulative attributes, but when using these it is
just as fast to evaluate the operators ≤ and < as it
is to evaluate ≥ and > in the WHERE clause. This
feature comes at the price of a lower compression
rate. When tuples share the same values in the struc-
tural attributes then the variation of the value within
the critical attribute should be low compared to the
full domain of the critical attribute. This type of
attribute is good for range-queries but not equality.
DelayInSeconds is an example of such an attribute.

3



4.4 Summary

In Figure 2 an overview of the properties of the three
attribute types can be seen. For operators it shows how
the attribute type acts when placed on the left hand
side. Usage shows if the attribute type is recommended
for use in the WHERE clause. S,A and C represents the
structural, accumulative and critical attribute sets, re-
spectively. GB shows if the attribute type is recom-
mended for use in the GROUP BY clause. Operators
which are marked with Xsupports the features of the
attribute types described earlier. The ÷ indicates that
performance probably will degrade severely. Perfor-
mance will also be influenced badly on the attribute
types which are not marked, but not as severe.

Type Usage V (Type, r) < = > GB
S In WHERE V (S, r)=Low X X X X
A Not WHERE V (A ∪ C, r)=High ÷ X ÷
C In WHERE V (A ∪ C, r)=High X X ÷

Figure 2: Summary of attribute types

In the rest of this article we will assume that the
attributes have the types as specified in Figure 3.

Attribute Type
LineDimPK Structural
TargetArrivalDimPK Accumulative
ActualArricalDimPK Accumulative
PointDD Accumulative
JourneyNoDD Structural
DelayInSeconds Critical

Figure 3: Types of attributes

5 The Model

Consider that the simple warehouse in Section 3 should
be used for historical analysis, and therefore tuples are
generally never deleted. If we assume that we have
20 bus lines, and that we get GPS information once
a minute per bus, and there are three busses per line;
this comes to over 30 million tuples a year. All this
data uses much disk space and accumulated over years
this data set could become very large.

We need a compact representation of the data with-
out losing performance on a wide range of query types.
In the rest of this article we will apply a compres-
sion technique on this simple warehouse. We will now
present the model behind the technique.

This model is based on differential compression
which according to [RH93] a compression of more than
90% can be achieved when data vary slowly. This is
because for most elements only the relationship be-
tween them needs to be stored. If data vary fast there
is nothing gained by only saving the relationship, be-
cause storing the actual value would not take up more
space.

Original data: 500 510 520 405 525
Differential pattern: 500 10 10 -115 120

Figure 4: Differential compression performed on a list
of integers with a differential pattern as result

From now on a differential pattern is the result of a
differential compression performed on a list of integers.
See Figure 4.

The compression in the model is achieved through
the reuse of differential patterns. The reuse is done
by using two arrays. A list of integers is split into
a number of small sublists of the size n. On each of
these sublists a differential compression is performed
and the result is a differential pattern which is stored
in the second array. Note that the first integer in the
differential pattern is stored in the first array and rest
of the sublist is stored in the second array. This can
be seen by comparing Figure 4 to the first entry in
Array A in Figure 5. This is done to promote the
reuse of the differential patterns. If the first integer was
stored in the second array it would not be differential
compression but substitution.

The differential pattern is stored in a second array
and a reference is made to this element. If the dif-
ferential pattern already exists in the second array a
reference is made to the existing pattern. Therefore
each pattern is only stored once, see Figure 5. For ex-
ample is the pattern with the DeltaId 1 referred to by
both elements one and four in Array A.

If several lists are required to be compressed, the
same differential pattern array will be used, and one
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500 1
10,10,-115,120

230 2

170 4

430 1

100 3

1

40,-102,46,102

19,56,12,123

-10,30,103,184

Array A Array B

Base 
value Delta

Differential patternDelta
Id

Figure 5: The array structure of the data after com-
pression is performed

array is created for each list. When a pattern can be
referenced several times, space is saved.

5.1 Prerequisites

We have decided to compress tables containing inte-
ger attributes which does not allow nulls because they
usually populate the major part of a data warehouse.
The main table in the data warehouse is the fact ta-
ble, which mostly contains references to other tables.
These references are stored as integers. Therefore our
compression method will be a refined version of the
differential compression. The method can be used on
all tables which only contain integers.

5.2 Calculating Delta-Patterns

In order to apply this model to a data warehouse
a table to hold the delta patterns must be created.
When the number of elements in the delta patterns is
n then the format of this table is:

Delta(DeltaId, D1, D2, D3, ..., Dn)

Only every n’th row of the original fact table is
stored in the new fact table. However the new
fact table must be reorganized in such a way that
it corresponds to the new model. As an example
we will compress the attribute DelayInSeconds in

the data warehouse described in Section 3. First of
all the original attribute is deleted and two new at-
tributes are added to the fact table. The first is the
DelayInSecondsDelta attribute which is a foreign key
to a tuple in the Delta table. The second attribute is
the DelayInSecondsMax which, as opposed to the ex-
ample in Section 5, refers to the largest integer in the
set of integers that is compressed. The original data
from Figure 4 will be shown with delta pattern com-
pression in Figure 6.

Original data: 500 510 520 405 525
Delta pattern: -25 -15 -5 -120 0

Figure 6: Delta pattern compression performed on a
list of integers, with a delta pattern as result where the
max value is 525

Now we need to find the different delta patterns for
the Delta table. This is done by selecting n rows
from the DelayInSeconds attribute in the Busdata
table. These rows all share the same values in the
structural attributes, and they are put in the set m.
From this set of integers max(m1,m2, ...,mn) is cal-
culated and DelayInSecondsMax is set to this value
which we will refer to as colmax. Now the delta pat-
tern must be found which is done by adding, if it does
not exist, the tuple m′ which is (m1 − colmax,m2 −
colmax, ...,mn − colmax) to the Delta table. The at-
tribute DelayInSecondsDelta is set to the value of
DeltaId for m′. If a pattern cannot be filled fully
then the rest is filled with nulls.

When a new chunk of data is to be inserted into
the compressed data warehouse, a new standard un-
compressed fact table containing only the new data is
created. From this the compression can be applied as
described above and the compressed data is appended
to an already compressed fact table.

6 Compression

This section will explain how the compression is ap-
plied on the three different attribute types described
in Section 4. The table Busdata from the simple ware-
house described in Section 3 will be used as an exam-
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ple. The name of this new compressed table will be
CBusdata.

6.1 Deciding n

The first thing to do is to find the size of the delta
pattern. There is no easy way to find the perfect n
value, as this is dependent on the data, but it is not
an impossible task to try different values to see where
the best compression is achieved. A rule of thumb for
the size of n is to set it to about nr

V (S,r) where nr is
the number of tuples in the standard warehouse. This
number is the average length of the delta pattern.

6.2 Structural

The relationship between the Delta table and the com-
pressed fact table is a one-to-many. This means that
several tuples in the compressed fact table may refer
to the same tuple in the Delta table.

One tuple in the compressed fact table will actually,
through the use of the Delta table, represent a num-
ber of tuples in the original fact table. These original
tuples all share the same values in the structural at-
tributes. However this does not mean that all tuples
in the compressed fact table, that refers the same tu-
ple in the Delta table all share the same values in
the structural attributes as only the delta patterns are
shared.

When the structural attributes have the same value
there is no reason to apply a delta pattern. Such a
pattern would anyway only consist of zeroes. Therefore
there is no need to waste space making references to
the Delta table for these attributes.

Hence the new schema is not changed with regard
to the structural attributes, so these are just moved
directly to the CBusdata table. The format of this
table is for now the following

CBusdata(LineDimPK, JourneyNoDD, ...)

6.3 Accumulative

In order to compress an accumulative attribute the
approach looks a lot like the one used in Section 5.2.
Two attributes are created in the CBusdata table for

each original attribute (we shall refer to this as col) in
the Busdata table. The two attributes that are added
are denoted as colDelta and colMax where colDelta
is a foreign key to the tuple in the Delta table that
holds the delta pattern, and the colMax attribute holds
the maximum value of the original attributes. The
format of the CBusdata table is for now the following

CBusdata(..., TargetArrivalDimPKDelta,
TargetArrivalDimPKMax,
ActualArrivalDimPKDelta,
ActualArrivalDimPKMax, PointDimDDDelta,
PointDimDDMax, ...)

6.4 Critical

As described in Section 4.3 the critical attributes are
just a specializations of the accumulative attributes.
Therefore basically the same compression technique
as in Section 6.3 is applied. The only difference is
that yet another attribute is added to the CBusdata
table. This attribute is denoted as colMin which holds
the minimum value of the original attribute. The
format of the CBusdata table is now the following

CBusdata(..., DelayInSecondsDelta,
DelayInSecondsMin, DelayInSecondsMax,
...)

6.5 Summary

We have now introduced the compression method for
the three different attribute types and how they are in-
serted into in the CBusdata table. Before the model
is complete we shall introduce yet another attribute
which is denoted SizeOfDelta for the purpose of per-
formance which we will elaborate on in Section 8.

The new full schema of the simple data warehouse
from Section 3 is shown in Figure 7.

6.6 Inserts

Section 5.2 describes a general strategy for transform-
ing a warehouse schema into a new schema correspond-
ing to the model and also how data is processed to
be held in the compressed fact table. This however
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LineDim
PK LineDimPK

Name

TargetArrivalDim
PK TargetArrivalDimPK

Time

ActualArrivalDim
PK ActualArrivalDimPK

Time

Delta
PK DeltaId

D1
D2
...
Dn

CBusdata
PK LineDimPK
PK TargetArrivalDimPKDelta
PK TargetArrivalDimPKMax
PK ActualArrivalDimPKDelta
PK ActualArrivalDimPKMax
PK PointDDDelta
PK PointDDMax
PK JourneyNoDD
PK DelayInSecondsDelta
PK DelayInSecondsMax
PK DelayInSecondsMin
PK SizeOfDelta

Figure 7: The new warehouse schema

does not elaborate on how single inserts to the com-
pressed fact table are done. This section will clarify
how these inserts are done on an already compressed
table. Listing 3 shows a general approach for mak-
ing single inserts in the compressed warehouse. This
algorithm must be executed atomically.

If a tuple in the compressed fact table with the same structural
attributes exists and SizeOfDelta< n

• Update this tuple to reflect the new maximum and
minimum values

• If the delta patterns for this tuple are referred to by other
tuples, copy these patterns

• Change these delta patterns to reflect on the inserted tuple

Else

• Create a tuple in the compressed fact table with the value
of the inserted tuple

• Create a delta pattern, if it does not exist, with the value
(0, null, ..., null)

• Refer to this delta pattern from the newly created tuple

Listing 3: Insert algorithm

7 Decompression

Even though the new representation of the fact table is
different from the original, it is still possible to recreate
the original fact table. The decompression happens at

query level during execution, where the original fact
table is calculated in a view and afterwards the query
is performed on that view. The creation of this view
can be done automatically. Listing 4 shows the algo-
rithm for creating the view. This function takes in the
parameters n and Attribute. n corresponds to the
n as described in Section 5.2 which is the number of
values stored in each delta pattern. Attribute is the
set of attributes in the original table. Each of these
attributes has a distinct short name which we will de-
note col∆. The algorithm builds the SQL query and
returns it as a string. The view recreating the stan-
dard Busdata table from Section 3 is shown in Listing
5.

The algorithm in Listing 4 uses four variables called
select, from, where and query for building up the
query. Line 3 secures that every attribute in the Delta
table is joined with the fact table. Line 4 secures that
every attribute in the original fact table is put in the
view. Lines 5-6 adds the structural attributes to the
select statement. Lines 8-10 creates the select, from
and where statement for the accumulative and critical
attributes. Line 13 makes sure that delta attributes
with null values are not joined. Line 14 creates the
subselect and in lines 15-18 the UNION ALL is added to
the query. Line 19 resets the select, from and where
variables to the empty string as they are reused in the
for loop. Finally the whole query is returned in line
21.

8 Query Rewriting

In this section we shall discuss a general approach
for rewriting the queries performed on the compressed
warehouse. Of course all queries can be performed on
the view described in Section 7, but the execution time
is almost always longer than on the standard ware-
house. Therefore we shall introduce general rewrite
rules from a query on the standard warehouse to a
query on the compressed warehouse.

As described in Section 6.5 another attribute called
SizeOfDelta is added to the CBusdata table. This
attribute is used for achieving better performance
when applying the rewrite rules. It indicates how many
attributes in the tuple in the Delta table that are not
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1 function create view(n, Attribute) : String {
2 query ←(CREATE VIEW Busdata AS ()
3 for (1 to n as i) {
4 foreach(Attribute as col) {
5 if (col ∈ S)
6 select ←select + col
7 else {
8 select ←select + ((colmax + col∆.Dδ) AS

col)
9 from ←from + (Delta AS col∆)

10 where ←where + (
colDelta = col∆.DeltaId)

11 }
12 }
13 where ←where + (AND SizeOfDelta >= i)
14 query ←query + (SELECT select FROM from

WHERE where)
15 if (i 6= n)
16 query ←query + (UNION ALL)
17 else
18 query ←query + ())
19 select, from, where ←ε
20 }
21 return query
22 }

Listing 4: The algorithm for creating view

1 CREATE VIEW Busdata AS (
2 SELECT LineDimPK ,
3 (ActualArrivalDimPKMax+AA.D1) AS

ActualArrivalDimPK ,
4 (TargetArrivalDimPKMax+TA.D1) AS

TargetArrivalDimPK ,
5 (PointDimDDPKMax+PO.D1) AS PointDimDD ,
6 JourneyNo ,
7 ( DelayInSecondsMax+DL.D1) AS

DelayInSeconds
8 FROM
9 Fact , Delta AS AA, Delta AS TA, Delta

AS PO, Delta AS DL
10 WHERE ActualArrivalDimPKDelta=AA. DeltaId
11 AND TargetArrivalDimPKDelta=TA. DeltaId
12 AND PointDimDDDelta=PO. DeltaId
13 AND DelayInSecondsDelta=DL. DeltaId
14 AND SizeOfDelta >= 1
15 UNION ALL
16 SELECT LineDimPK ,
17 (ActualArrivalDimPKMax+AA.D2)
18 . . .
19 DelayInSecondsDelta=DL. DeltaId
20 AND SizeOfDelta >= N)

Listing 5: The view created by the algorithm in Listing
4

null. This ensures that only for example three at-
tributes are calculated if the actual size of the pattern
is three.

8.1 General Approach

This section will apply the rewrite rules for differ-
ent parts of the standard fact table SQL query. We
shall only describe the comparison operators >,= and
< from the WHERE clause. In addition, the aggre-
gation functions sum,max,count and avg will be de-
scribed. Other operators and aggregation functions
can be rewritten using similar rules. During the next
three sections definitions are introduced that will be
used in Section 8.1.4 for the final rewrite.

8.1.1 Initial Definitions

F is defined as the attributes in the dimension tables.
Now the set B can be defined as N ∪ S ∪ A ∪ C ∪ F
and the element x ∈ B. All queries to the standard
warehouse should be in the form as shown in List-
ing 6 where CL ⊆ B, AL ⊆ {f(x1), . . . , f(xk)} where
f ∈ {sum, max, count, avg}, FL is a set of dimension
tables, WC is a the WHERE clause containing only the
boolean operators AND, OR and NOT. Additional two
sets are defined; WL which is a subset of B contain-
ing the attributes used in WC. We define Q as a subset
of B with the attributes from AL and HC in union with
WL ∪ CL ∪ GL.

1 SELECT 〈CL〉 , 〈AL〉
2 FROM Fact , 〈FL〉
3 WHERE 〈WC〉
4 GROUP BY 〈GL〉
5 HAVING 〈HC〉

Listing 6: A query for the standard warehouse

If nothing is written in the WC or HC clause then we
shall assume that 1 = 1 is written. If the AL is not
empty and nothing is written in the GL clause then the
GL is implied to the empty set.

8.1.2 Rewriting Q

Now we take the initial steps for rewriting the query on
the standard warehouse to a query on the compressed
warehouse. We start off by rewriting the elements in
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the set Q defined in Section 8.1. The algorithm for
rewriting the set Q is described in Listing 7.

1 procedure transform q(Q) {
2 foreach(Q as col) {
3 if (col ∈ S ∪N ∪ F) {
4 CL′ ←CL′ ∪ {(col)}
5 }
6 elseif (col ∈ A ∪ C) {
7 CL′ ←CL′ ∪ {(colmax + col∆.Dδ AS col)}
8 FL′ ←FL′ ∪ {(Delta AS col∆)}
9 WL′ ←WL′ ∪ {(colDelta = col∆.DeltaId)}

10 }
11 }
12 }

Listing 7: The algorithm for rewriting Q

The algorithm takes in a parameter Q and results
in three new sets CL′,FL′ and WL′ which are saved for
later. Lines 3-4 add the structural attributes directly
to the set CL′. Lines 6-9 add the necessary elements
to CL′,FL′ and WL′ for the accumulative and critical
attributes. The symbol δ will later be substituted with
the numbers 1 to n. colmax is just a notion of the
attribute with the suffix max. Line 7 gets the actual
value from the delta table for the given attribute. Lines
8-9 make sure that the Delta table is joined for each
attribute that needs to access the values in the Delta
table.

8.1.3 Rewriting WC

As Section 8.1.2 covered the rewrite of the set Q, the
only thing left from Listing 6 that needs to be rewritten
is the WC clause. This should be done by applying the
rewrite rules from Appendix A onto each boolean sub-
expression in WC. We now define WC′ which contains
the rewritten expressions from WC. This is a result of
syntactical substitution. The expressions in WC′ are
furthermore put in conjunction normal form in order
to ease the final rewrite process.

Appendix A describes general rewrite rules for the
WC clause. For example when the WC clause in List-
ing 1 says DelayInSeconds> 180 then a suitable
rule must be found. As DelayInSeconds is a criti-
cal attribute and 180 is a numeral then the rule for
C > N must be applied. The rule says Cmax >
N ∧ (Cmax + C∆.Dδ) > N . The first part of the rule

makes sure that rows are joined with the Delta ta-
ble only if the delta pattern actually contains a value
larger than 180. The second part of the rule makes
the join with the delta table. Therefore the WC′ clause
will now look like DelayInSecondsMax > 180 AND
(DelayInSecondsMax+DelayInSecondsAA.Dδ) > 180.

8.1.4 Final Rewrite

In the preceding sections we have defined and con-
structed the sets CL′,FL′ and WL′ and the boolean ex-
pression WC′ which will be used for the rewrite. The
only thing left is to define yet another boolean expres-
sion WC′′ which should be set to (

∧
y∈WL′ y)∧ WC′. This

just says that every element in WL′ is and’ed together
and finally and’ed together with WC′. Furthermore sub-
clauses in WC′′ containing only elements in the com-
pressed fact table should be placed first (to promote
short-circuiting). The final rewrite should be done by
using Listing 8.

1 SELECT 〈CL〉 , 〈AL〉 FROM (
2 (SELECT 〈CL′δ→1 〉
3 FROM CFact , 〈FL′ 〉 , 〈FL〉
4 WHERE SizeOfDelta >= 1 AND 〈WC′′δ→1 〉 )
5 UNION ALL
6 . . .
7 UNION ALL
8 (SELECT 〈CL′δ→n 〉
9 FROM CFact , 〈FL′ 〉 , 〈FL〉

10 WHERE SizeOfDelta >= n AND 〈WC′′δ→n 〉 )
11 ) GROUP BY 〈GL〉 HAVING 〈HL〉

Listing 8: The final rewrite

The SQL statement in Listing 8 consists of one outer
statement and one inner statement that consists of n
union’ed statements. Line 1 selects the attributes and
the aggregations from the inner statement. Lines 2-
5 are the select statement that is union’ed n times,
where δ → m means that δ is substituted with m in
the concrete element.

8.2 Further Rewrite

In the case where GL ⊆ S a further rewrite of the
queries can be done. Remember that if GL= ∅ then it is
also a subset of S. In order to do this rewrite the rules
from Section 8.1 must first be applied. We define three
new boolean expressions w, w′ and w′′ which all are
sub expressions of WC′. w is defined as the sub-clauses
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in WC′ that only contain elements from the compressed
fact table and N. A temporary expression t is defined
as the sub-clauses from WC′ containing elements from
the delta table and not containing elements from F,
now w′ is defined as SizeOfDelta ≥ δ ∧ t. Finally w′′

is the sub-clauses containing elements from F. How
these three sets are related is shown in Figure 8. Now
AL and HC must be modified as described in Appendix
B, which results in AL′ and HC′.

CFact
w

Delta

w

Dim

w
´

´ ´

Figure 8: The relation between w, w′, w′′

Now the algorithm in Listing 9 can be used for the
final rewrite of a query on a standard warehouse to a
query on the compressed warehouse. WL′′′ should be
set to (

∧
y∈WL′ y)

1 SELECT 〈CL〉 , 〈AL′ 〉
2 FROM CFact , 〈FL′ 〉 , 〈FL〉
3 WHERE 〈w〉 AND 〈WL′′′ 〉
4 GROUP BY 〈GL〉
5 HAVING 〈HC〉

Listing 9: The new final rewrite

8.3 Example Rewrite

In this section we will apply the rules described above
onto the example given in Listing 1. The result, when
the rules have been applied, is shown in Listing 10. As
it appears, the query is substantially larger than the
one in Listing 1.

The lines 2-9 in Listing 10 refer to the lines 2-4 in
Listing 1 and the Lines 12-18 in Listing 10 refer to the
lines 6-7 in Listing 1.

9 Public Transportation Case

In order to demonstrate the model described in this ar-
ticle, we have begun a co-operation with Nordjyllands
Trafikselskab (NT), which is the local bus company lo-
cated in Northern Jutland. NT has GPS devices in all

1 SELECT
2 (SELECT SUM(
3 b2n ( SizeOfDelta>=1 AND
4 ( DelayInSecondsMax+disaaa .D1) >180)∗1∗1+
5 . . .
6 b2n ( SizeOfDelta>=n AND
7 ( DelayInSecondsMax+disaaa .Dn) >180)

∗1∗1)
8 FROM CBusdata , Delta as d i saaa
9 WHERE DelayInSecondsMax >180 AND

10 ( DelayInSecondsDelta=disaaa . DeltaId ) )
11 /
12 (SELECT SUM(
13 b2n ( SizeOfDelta>=1 AND 1=1)∗1∗1+
14 . . .
15 b2n ( SizeOfDelta>=n AND 1=1)∗1∗1)
16 FROM CBusdata
17 WHERE 1=1)
18 ∗100 AS Delay

Listing 10: Rewrite of Listing 1

their busses and real-time data is sent to a server. GPS
data for one day sums up to about 100.000 tuples.

The first thing to do is to convert their real-time data
into data warehouse schema. The format of the real-
time data from the expdatedcall table is described
in the PubTrans document[Fjä03]. The format of the
fact table from the standard warehouse is outlined in
Figure 9. For the sake of simplicity we have omitted
the dimension tables as they are unimportant in this
context. Appendix C shows the full star schema of the
standard data warehouse.

Microsoft SQL-Server 2000 is used as the database
server. As this DBMS does not support more than 16
combined primary keys, we shall build the fact table
without using primary keys, as a key consisting of only
16 attributes cannot be found.

To compress this warehouse the different attribute
types as described in Section 4 must be identified.
Figure 9 shows how the different attributes are cat-
egorized. This categorization is based on knowledge
gained by studying data provided by NT.

Currently at NT, real-time data is discarded every
day in order to keep data for three days only. Therefore
a data warehouse model is easy to apply to this exist-
ing model as the data just should be copied to another
database keeping the data warehouse before the data
is deleted from the source. Here the conversion to a
standard fact table can be done at any time (typically
this should be done at night in order to prevent slow-

10



Attribute Type
LineDimPK Structural
ProductDimPK Structural
ContractorDimPK Structural
OriginDimPK Structural
EarliestDepartureDateDimPK Structural
EarliestDepartureTimeDimPK Accumulative
TargetDepartureDateDimPK Structural
TargetDepartureTimeDimPK Accumulative
ActualDepartureDateDimPK Structural
ActualDepartureTimeDimPK Accumulative
LatestArrivalDateDimPK Structural
LatestArrivalTimeDimPK Accumulative
TargetArrivalDateDimPK Structural
TargetArrivalTimeDimPK Accumulative
ActualArrivalDateDimPK Structural
ActualArrivalTimeDimPK Accumulative
OperatorDimPK Structural
JourneyDimPk Structural
ArrivalDelayDimPK Critical
DepartureDelayDimPK Critical
IsAtStopAreaDimPK Accumulative

Figure 9: Types of attributes in the NT case

ing other processes down) whereafter this data can be
compressed and placed in the actual data warehouse.
All these tasks can be done automatically.

10 Performance

In this section we will test performance on the model
described in this article. The performance will be mea-
sured both in storage and speed in comparison to the
standard warehouse. Tests will be performed on Pub-
Trans data with 598, 147 tuples in the fact table in
the standard warehouse which corresponds to 8 days
of data from NT. The tests were performed on a com-
puter with a 1.5 Ghz Pentium M processor and 512
MB RAM. The queries were run five times and the
best and the worst execution times were ignored and
the average of the remaining three was calculated.

10.1 Simple Warehouse

During this article the SQL query from Listing 1 has
been a running example and now the time has come
to test it’s performance. The simple warehouse has
been filled with real PubTrans data in order to make
the tests as realistic as possible. With regard to the
compressed warehouse the tests have been performed
with an n value of 7, 14, 21 and 28.

Left side of Figure 10 shows the storage gain com-
pared to the standard warehouse. This is measured
on the fact table only as the dimension tables are the
same. With an n value of 28 the compressed warehouse
size is reduced to 56% of the standard warehouse.
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Figure 10: The storage test of the simple- and the full
warehouse

The query from Listing 1 is a rather realistic query
which is also good for performance testing as it must
select some specific data from the warehouse but also
count the size of the whole warehouse.

Figure 11 shows the speed test of the simple ware-
house. The execution time of the query on the stan-
dard warehouse is 190 milliseconds where the best of
the queries on the compressed warehouse is 315 mil-
liseconds. As described in Section 8 the execution time
on the view is almost always larger than the one on the
standard warehouse. This can also seen from the figure
where the execution time is 12, 717 milliseconds.

As it appears from this example warehouse a storage
gain is achieved. A slightly worsening in the execution
speed for the query from Listing 1 is experienced. But
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as it will appear from the next section not all queries
are slower than the one on the standard warehouse.

10.2 Transportation Case

In this section we will test the performance of the ware-
house from the public transportation case described in
Section 9. Some of the queries are deduced from wishes
expressed by NT. In this section we will not look at the
performance of the view as tests have shown that the
execution time is significantly worse.

As in Section 10.1 the performance in comparison to
the standard warehouse is tested with regard to storage
and speed. Also here n values of 7, 14, 21 and 28 have
been tested. The queries on the compressed warehouse
is rewritten using the approach from Section 8.

A description of each query that is tested is shown
below. The queries can be seen in Appendix D:

Q1 For two given points determine the average time
between them.

Q2 Determine the average time between a set of
points.

Q3 Determine the percentage delay for a given con-
tractor.

The right side of Figure 10 shows the storage gain
in the case warehouse compared to the standard ware-
house. With an n value of 14 the warehouse only oc-
cupies 40% of the standard warehouse. As it appears

from the figure a significantly larger compression in the
case warehouse is achieved than on the simple ware-
house. An explanation for this could be that the case
warehouse contains a lot more attributes that are com-
pressed and uses the same delta table which thereby
potentially reuses more patterns.

Figure 12 shows how the rewritten queries perform
speed wise compared to the standard warehouse with
different n values.
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Figure 12: The speed test of the case warehouse

From Figure 12 one can see that the query Q1 per-
forms significantly better on the compressed warehouse
than on the standard warehouse, that is a speed in-
crease of 300%. The reason for this improvement is
the use of structural attributes in the WHERE clause.
This makes it able to eliminate a lot of rows before the
join. As the fact table is n times smaller it is much
faster to run through this.

Query Q2 is a further developed version of query
Q1, but running the query for many sets of points.
Intuitively it should run faster than the one on the
standard warehouse as it is basically the same query
as Q1. One reason why this is not the case is that the
execution planner cannot optimize as much as it can
on the standard warehouse.

Query Q3 is rather slow on the compressed ware-
house compared to the standard warehouse. The rea-
son for this is that a dimension table is involved which
makes the query run much slower. This it because the
rewrite rules state that the join must be done for each
union. One could imagine that a preprocessor could be

12



built that makes this join before the query and substi-
tutes parts of the WHERE clause with these values. The
results for query Q3′ show some preliminary results of
a rewrite of query Q3.

As it appears from this section in some cases it is safe
to choose a large n both speed and storage wise. When
using the rule of thumb from Section 6.1 on the public
transportation case n should be about 15. However, in
some cases, for example Q3, the execution time grows
together with n. Therefore the user must make several
tests when determining n in order to get one that fits
his needs.

11 Conclusion

In this paper we have presented our idea for data ware-
house optimization through differential patterns and
schema change. We have shown that with a combina-
tion of differential compression, reuse of patterns and
schema change a storage gain can be achieved. This
was done without limiting the query possibilities or
loosing precision in the query results.

We have shown algorithms for compressing and de-
compressing the data and demonstrated a way for mak-
ing the compression transparent to the user. The price
for compressing the warehouse is more complex queries
but these can be rewritten automatically. The model
was implemented, and we showed some preliminary re-
sults that were obtained on real data. We have shown
that space can almost always be saved and in some
cases even better performance can be achieved.

In this article we have focused solely on data ware-
houses, but nothing prevents applying this model to
other databases.
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[Fjä03] Stefan Fjällemark. PubTrans Real-time
Output Interface Reference Manual - Ver-
sion 2.3E. PubTrans User Group, 2003.

[GRDT99] Kiran B. Goyal, Krithi Ramamritham,
Anindya Datta, and Helen M. Thomas.
Indexing and compression in data ware-
houses. In DMDW, page 11, 1999.

[Kim02] Ralph Kimball. The Data Warehouse
Toolkit. Wiley, 2002.

[Kor01] Zhiyuan Chen & Johannes Gehrke & Flip
Korn. Query optimization in compressed
database systems. SIGMOD, 2001.

[PRWS00] Scott F. Kaplan Paul R. Wilson and Yan-
nis Smaragdakis. The case for com-
pressed caching in virtual memory systems.
Dept. of Computer Sciences University of
Texas at Austin Austin, Texas 78751-1182,
page 16, 2000.

[RH93] Mark A. Roth and Scott J. Van Horn.
Database compression. SIGMOD
RECORD, 22(3), September 1993.

[Riz03] Matthias Nicola & Haider Rizvi. Storage
layout and i/o performance in data ware-
houses. DMDW, 2003.

[Ses95] Gautam Ray & Jayant R. Haritsa & S. Se-
shadri. Database compression: A perfor-
mance enhancement tool. COMAD, 1995.

[Sun01] Abraham Silberschatz & Henry F. Korth
& S. Sundarshan. Database System Con-
cepts. McGraw-Hill, 4th bk&cd edition edi-
tion, 2001.

13



A Rewrite Rule for WC

This appendix deals with the rewriting of the WC clause from Section 8.1. Now each boolean sub-expression in
WC, on the form y ⊕ y′, where y, y′ ∈ B and ⊕ ∈ {>,=, <}, should be rewritten using the rules described in
this appendix.
The symbol → means that the query should be rewritten using the rule on the right hand side.
The symbol ⇒ means that the query should be rewritten using the rule on the right hand side. The right hand
side should furthermore be rewritten using other rules from this appendix.
A number of letters are used in this section. S, S′ ∈ S, A,A′ ∈ A, C,C ′ ∈ C, N,N ′ ∈ N and F, F ′ ∈ F.
Furthermore a symbol ⊕′ is defined which means that the symbol is inverted, for example if ⊕ represents a <
then ⊕′ represents >. If ⊕ represents an = then ⊕′ also represents an =.
The symbol x ∈ S ∪A ∪ C ∪N ∪ F which represents the variable that these rules apply to. The symbol ∆ is a
unique short name for the attribute. The symbol δ will later be substituted with the numbers 1 to n.

A.1 Rewriting S ⊕ x

These rules apply when a structural attribute is compared to x.
S attributes can be compared directly S ⊕ S′ → S ⊕ S′

In the two first rules a short circuiting
can be done before the join

S < A → S < Amax ∧ S < (Amax + A∆.Dδ)
S = A → S ≤ Amax ∧ S = (Amax + A∆.Dδ)
S > A → S > (Amax + A∆.Dδ)

The first rule is similar to the first
above. The next a new short circuiting
clause is appended. The last is short
circuited on Cmin

S < C → S < Cmax ∧ S < (Cmax + C∆.Dδ)
S = C → S ≤ Cmax ∧ S ≥ Cmin ∧ S = (Cmax + C∆.Dδ)
S > C → S > Cmin ∧ S > (Cmax + C∆.Dδ)
S ⊕N → S ⊕N

S and F attributes can be compared di-
rectly

S ⊕ F → S ⊕ F
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A.2 Rewriting A⊕ x

These rules apply when an accumulative attribute is compared to x.

Use the rules from Section A.1 A⊕ S ⇒ S ⊕′ A

No Short circuiting can be done here.
The two attributes must be compared
fully.

A⊕A′ → (Amax + A∆.Dδ)⊕ (A′max + A′∆.Dδ)

The first rule must be compared fully
where the two others can be short cir-
cuited on Cmin

A < C → (Amax + A∆.Dδ) < (Cmax + C∆.Dδ)
A = C → Amax ≥ Cmin ∧ (Amax + A∆.Dδ) =
(Cmax + C∆.Dδ)
A > C → Amax > Cmin ∧ (Amax + A∆.Dδ) >
(Cmax + C∆.Dδ)

These rules are similar to the ones
above.

A < N → (Amax + A∆.Dδ) < N
A = N → Amax ≥ N ∧ (Amax + A∆.Dδ) = N
A > N → Amax > N ∧ (Amax + A∆.Dδ) > N

These rules are similar to the ones
above

A < F → (Amax + A∆.Dδ) < F
A = F → Amax ≥ F ∧ (Amax + A∆.Dδ) = F
A > F → Amax > F ∧ (Amax + A∆.Dδ) > F

A.3 Rewriting C ⊕ x

These rules apply when a critical attribute is compared to x.

Use the rules from Section A.1 C ⊕ S ⇒ S ⊕′ C

Use the rules from Section A.2 C ⊕A ⇒ A⊕′ C

The first rule is short circuited on Cmin

and the second is also short circuited on
Cmax. Instead of the last rule the first
shall be applied

C < C ′ → Cmin < C ′max ∧ (Cmax + C∆.Dδ) <
(C ′max + C ′∆.Dδ)
C = C ′ → Cmin ≤ C ′max ∧ Cmax ≥ C ′min ∧ (Cmax +
C∆.Dδ) = (C ′max + C ′∆.Dδ)
C > C ′ ⇒ C ′ < C

The first and last rule are the same just
with inverted operators and are short
circuited on different attributes. The
rule in the middle is short circuited on
both attributes

C < N → Cmin < N ∧ (Cmax + C∆.Dδ) < N
C = N → Cmax ≥ N∧Cmin ≤ N∧(Cmax+C∆.Dδ) = N
C > N → Cmax > N ∧ (Cmax + C∆.Dδ) > N

These rules are similar to the ones
above.

C < F → Cmin < F ∧ (Cmax + C∆.Dδ) < F
C = F → Cmax ≥ F ∧Cmin ≤ F ∧ (Cmax +C∆.Dδ) = F
C > F → Cmax > F ∧ (Cmax + C∆.Dδ) > F
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A.4 Rewriting N ⊕ x

These rules apply when a number is compared to x.

Use the rules from Section A.1 N ⊕ S ⇒ S ⊕′ N

Use the rules from Section A.2 N ⊕A ⇒ A⊕′ N

Use the rules from Section A.3 N ⊕ C ⇒ C ⊕′ N

N attributes can be compared directly N ⊕N ′ → N ⊕N ′

N and F attributes can be compared
directly

N ⊕ F → N ⊕ F

A.5 Rewriting F ⊕ x

These rules apply when a foreign attribute is compared to x.

Use the rules from Section A.1 F ⊕ S ⇒ S ⊕′ F

Use the rules from Section A.2 F ⊕A ⇒ A⊕′ F

Use the rules from Section A.3 F ⊕ C ⇒ C ⊕′ F

Use the rules from Section A.4 F ⊕N ⇒ N ⊕′ F

F attributes can be compared directly F ⊕ F ′ → F ⊕ F ′

B Rewrite Rule for AL and HC

This appendix deals with the rewriting of the AL and HC clauses from Section 8.2. The algorithms in Section
8.1 must be applied to the query before these rules are applied.
The symbol → means that the query should be rewritten using the rule on the right hand side.
The symbol ⇒ means that the query should be rewritten using the rule on the right hand side. The right hand
side should furthermore be rewritten using other rules from this appendix.
The following functions are needed for the rewrite:
b2n(b) → CASE WHEN b THEN 1 ELSE 0 END
n2n(n) → CASE WHEN n IS NULL THEN 0 ELSE n END
greatest(b1, n1, b2, n2, . . . , bj , nj) → SELECT MAX(a) FROM (SELECT n1 AS a WHERE b1 UNION . . . UNION
SELECT nj AS a WHERE bj) AS b

We define the number v as 1 if FL = ∅ else it is (SELECT COUNT( ? ) FROM <FL> WHERE
SizeOfDelta>=δ AND WC′′).
The symbol ∆ is a unique short name for the attribute. δ → m means that δ is substituted with m in the
concrete element. For example if the rule says w′δ→1 then every time the symbol δ appears in w′ it should be
substituted with 1.
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B.1 Rewriting sum(x)

These rules are used for sum-
mation. This takes the sum of
all values from the Delta table
and if the where clause applies to
these values then 1 is returned.
So if the where clause applies to
all values and n is 5 then it basi-
cally reads sum(5).

sum(S) → sum(b2n(w′δ→1)·vδ→1 ·S+. . .+b2n(w′δ→n)·vδ→n ·S)

sum(A) → sum(b2n(w′δ→1) ·vδ→1 ·n2n(Amax +A∆.D1)+ . . .+
b2n(w′δ→n) · vδ→n · n2n(Amax + A∆.Dn))

sum(C) → sum(b2n(w′δ→1) · vδ→1 ·n2n(Cmax +C∆.D1)+ . . .+
b2n(w′δ→n) · vδ→n · n2n(Cmax + C∆.Dn))

sum(N) → sum(b2n(w′δ→1)·vδ→1·N+. . .+b2n(w′δ→n)·vδ→n·N)

sum(F ) → sum(b2n(w′δ→1)·(SELECT SUM(F) FROM 〈FL〉 WHERE w′′δ→1)+
. . . + b2n(w′δ→n) · (SELECT SUM(F) FROM 〈FL〉 WHERE w′′δ→n))

B.2 Rewriting max(x)

These rules basically takes the
greatest value of the values from
the Delta table where the where
clause applies

max(S) → max(greatest((w′δ→1 ∧ vδ→1 ≥ 1) ∨ . . . ∨ (w′δ→n ∧
vδ→n ≥ 1), S))

max(A) → max(greatest(w′δ→1 ∧ vδ→1 ≥ 1, (Amax +
A∆.D1), . . . , w′δ→n ∧ vδ→n ≥ 1, (Amax + A∆.Dn)))

max(C) → max(greatest(w′δ→1 ∧ vδ→1 ≥ 1, (Cmax +
C∆.D1), . . . , w′δ→n ∧ vδ→n ≥ 1, (Cmax + C∆.Dn)))

max(N) → max(greatest((w′δ→1 ∧ vδ→1 ≥ 1) ∨ . . . ∨ (w′δ→n ∧
vδ→n ≥ 1), N))

max(F ) → max(greatest(w′δ→1 ∧ vδ→1 ≥
1, (SELECT MAX(F) FROM 〈FL〉 WHERE w′′δ→1), . . . , w

′
δ→n∧ vδ→n ≥

1, (SELECT MAX(F) FROM 〈FL〉 WHERE w′′δ→n)))

B.3 Rewriting count(x)

Use the rules from Section B.1 count(x) ⇒ sum(1)

B.4 Rewriting avg(x)

Use the rules from Section B.1 avg(x) ⇒ sum(x)/count(x)
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B.5 DBMS Specific Rewrite

There might be the need for DBMS specific rewrite and we will here cover those needed for Microsoft SQL-server
2000.

When the error Cannot perform an aggregate
function on an expression containing an aggre-
gate or a subquery is encountered this is usually
due to a sub-SELECT within an aggregating sum.
An example of such is shown in Listing 11 and
a rewrite in Listing 13. Note that the p1 and p2
are in table1 and p3 is in table2.

The error Multiple columns are specified in an
aggregated expression containing an outer refer-
ence... is usually met when one aggregates over
more than one outer reference. An example of
such can be seen in Listing 12 and a legal rewrite
in Listing 14.

1 SELECT p1 , sum(8∗2+3∗
2 (SELECT COUNT(∗ ) FROM tab l e2 WHERE

p3=p1 )
3 ) FROM tab l e1

Listing 11: An illegal query in Microsoft SQL-
server

1 SELECT p1 , p2 ,
2 (SELECT SUM(p1∗p2∗p3 )
3 FROM tab l e2 )
4 FROM tab l e1 GROUP BY p1 , p2

Listing 12: An illegal aggregation in Microsoft
SQL-server

1 SELECT p1 ,
2 (SELECT SUM(8∗2+3∗x )
3 FROM (SELECT COUNT(∗ ) AS x
4 FROM tab l e2
5 WHERE p3=p1 ) AS sometable
6 )

Listing 13: A legal rewrite of the query from
Listing 11

1 SELECT p1 , p2 ,
2 (SELECT SUM( p1prime∗p2prime∗p3 )
3 FROM table2 , (SELECT p1 AS

p1prime , p2 AS p2prime ) AS
sometable )

4 FROM tab l e1 GROUP BY p1 , p2

Listing 14: Rewrite of Listing 12

Please note that when using sub-selects in the FROM clause one must give them a name with the AS-keyword.
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C Full Warehouse Schema
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D Performance Queries

1 SELECT
2 (SELECT AVG(CAST( ActualArrivalTimeDimPK AS FLOAT) )
3 FROM WH std fact
4 WHERE ( IsAtStopAreaDimPK=80
5 AND ActualArrivalTimeDimPK>−1
6 AND ActualDepartureTimeDimPK>−1
7 AND WH std fact . LineDimPK=152
8 AND WH std fact . OriginDimPK=15)
9 )

10 /
11 (SELECT AVG(CAST(ActualDepartureTimeDimPK AS FLOAT) )
12 FROM WH std fact
13 WHERE ( IsAtStopAreaDimPK=739
14 AND ActualArrivalTimeDimPK>−1
15 AND ActualDepartureTimeDimPK>−1
16 AND WH std fact . LineDimPK=152
17 AND WH std fact . OriginDimPK=15)
18 )

Listing 15: The query Q1

1 SELECT Point1 , Point2 , LineDimPK , OriginDimPK ,
2 (SELECT AVG(CAST( ActualArrivalTimeDimPK AS FLOAT) )
3 FROM WH std fact
4 WHERE ( IsAtStopAreaDimPK=Point2
5 AND ActualArrivalTimeDimPK>−1
6 AND ActualDepartureTimeDimPK>−1
7 AND WH std fact . LineDimPK=Point . LineDimPK
8 AND WH std fact . OriginDimPK=Point . OriginDimPK)
9 )

10 /
11 (SELECT AVG(CAST(ActualDepartureTimeDimPK AS FLOAT) )
12 FROM WH std fact
13 WHERE ( IsAtStopAreaDimPK=Point1
14 AND ActualArrivalTimeDimPK>−1
15 AND ActualDepartureTimeDimPK>−1
16 AND WH std fact . LineDimPK=Point . LineDimPK
17 AND WH std fact . OriginDimPK=Point . OriginDimPK)
18 )
19 FROM Point ;

Listing 16: The query Q2

1 SELECT
2 (SELECT CAST(COUNT(∗ ) AS FLOAT)
3 FROM WH std fact , WH DepartureDelayDim
4 WHERE( WH std fact . DepartureDelayDimPK > −1
5 AND WH std fact . ContractorDimPK = 5
6 AND NOT WH DepartureDelayDim . DelayStatus=’ green ’
7 AND WH std fact . DepartureDelayDimPK = WH DepartureDelayDim . DepartureDelayDimPK)
8 )
9 /

10 (SELECT CAST(COUNT(∗ ) AS FLOAT)
11 FROM WH std fact
12 WHERE ( WH std fact . DepartureDelayDimPK > −1
13 AND WH std fact . ContractorDimPK = 5)
14 )

Listing 17: The query Q3
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Summary

In this article we have described a general compression method for data warehouses in order to achieve a
storage and performance gain. The method describes how the attributes should be split into three different
groups, namely structural, accumulative and critical. The method also states how the schema of the data
warehouse should be changed. How the attributes are represented in the new warehouse is determined by the
attribute type. A structural attribute is an attribute that binds information together, that is V (S, r) should
be rather low. Accumulative and critical attributes are represented with respectively two or three attributes
in the new fact table. The reason for the choice of the attribute type depends on different properties of the
original attribute. A general example is presented which is used throughout the whole article.

The compression is based on differential compression with some slightly modifications, for example are all
values in the delta pattern relative to the maximum value of the compressed attributes. The compression is
achieved through the re-use of patterns, that is we expect the different chunks of data have the same pattern.

The method is implemented by adding a new table to the existing schema called the delta table which holds
n values. The fact table is modified so that is corresponds to the chosen attribute types. The compression is
applied to the fact table and the dimension tables are left alone.

In the article we show that the model can actually be used in a real-life scenario, as we have had a co-
operation with Nordjyllands Trafikselsskab which has provided us with real PubTrans data where we show that
the compressed warehouse only occupies 40% of the standard warehouse.

A general decompression technique is also described which is basically just a view that recreates the original
data warehouse. The execution speed on this view is almost always larger than on the standard warehouse.

Therefore we have shown some general rewrite rules for queries on the standard warehouse to queries on the
compressed warehouse which should make the queries run faster than on the view. These rules are based on
syntactical substitution where different parts of the SQL statement are gradually replaced by similar statements
to the compressed warehouse. These rules can be implemented as a compiler so that the compression becomes
transparent to the user.

In the last part of the article we describe how we have tested the performance of the model. The performance
is measured both storage and speed wise. The tests have been performed on different n sizes in order to test
where the best performance is achieved. We show that on some queries the execution speed is actually faster
than on the standard warehouse. The tests also show that some queries to the compressed warehouse are
slower.

In conclusion we have shown that space can almost always be saved and in some cases even better performance
can be achieved. In this article we have focused solely on data warehouses, but nothing prevents applying this
model to other databases.

Jens Frøkjær Palle Bertram Hansen

Ivan Vigsø Sand Larsen Tom Oddershede
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