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Abstract:

The number of modifications is typically or-

ders of magnitude higher than the number of

queries on a database that stores moving re-

gions. However, the predominant index struc-

ture for moving regions is the R+-tree and

this structure handles spatial queries better

than modifications. To address this prob-

lem a new indexing technique, called Lay-

ered Shifted Space-filling curves (LSS), is pre-

sented. LSS is optimized for modifications. It

uses shifted layers in order to assign only a

single index value to each region. Shifting lay-

ers guarantees that moving regions of a certain

size always fit on a particular layer. A prob-

lem with canonical use of space-filling curves

is that it requires prior knowledge of the data

to be indexed. A self maintenance method for

the LSS technique is proposed which makes

LSS work without a prior knowledge of the

data, e.g, world size. A performance study

using the Oracle DBMS compares LSS to Or-

acle’s R+-trees and existing space-filling curve

approaches. This study shows that LSS, com-

pared to Oracle’s R+-trees, is up to 35 times

faster for modifications at the expense of be-

ing up to 11 times slower for queries. Synthetic

data is often preferred for performance testing

as it is easy to control the conditions. This

paper also proposes both a data and work-

load generator for generating n-dimensional

moving objects. The data generator uses sta-

tistical distributions for moving and resizing

the objects. When testing an index it is of-

ten desired to test a mix of modifications and

queries. Therefore, this paper also provides a

workload generator which produces a mix of

inserts, updates, deletes, and spatial queries.

A performance study shows that STDW is able

to produce 27,000 object snapshots per second

on a standard PC.
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Preface

This project is split into two different papers: Layered Space-Filling Curves for Indexing Moving
Regions and STDW: A Multi-Dimensional Spatio-Temporal Data and Workload Generator. The
first paper is a further development our dat5 paper: Indexing Moving Objects Using Layered
Space-Filling Curves. The following sections have been changed: In Section 2, Related Work,
all work regarding data generation has been moved to the second paper. In Background, Section
3; Section 3.2, 3D Space-Filling Curves, has been added. Section 3.3, Query Types, has been
modified to describe three dimensional behavior. Section 4.2, 3D Layers, has been added. Section
5.4, 3D Shifting, has been added describing problems when shifting in three dimensions. Self
Maintenance, Section 6, is a new contribution in this paper. Spatial Queries, Section 7, has been
modified for using the self maintenance model. Furthermore, the performance study in Section
8 has been completely rewritten using the Oracle DBMS. The second paper is new and original
material.

Jens Frøkjær Palle Bertram Hansen

Ivan Vigsø Sand Larsen Tom Oddershede
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Layered Space-Filling Curves for Indexing Moving Regions

In the paper Layered Space-Filling Curves for Indexing Moving Regions a technique for indexing
moving regions called LSS is presented. The LSS technique is based on B+-trees and space-filling curves
and can be built on top of an existing DBMS. LSS handles modifications better than the predominant
spatial index structure, the R+-tree, at the expense of slower spatial queries. When dealing with moving
regions the number of modifications is often typical orders of magnitude larger than the number of
queries, and therefore the sacrifice of slower queries can be justified.

The paper presents background knowledge for the use of space-filling curves. The canonical use of
space-filling curves is one plane divided into cells, and it handles regions that extend over multiple cells
by storing them multiple times. The LSS technique consists of multiple planes on top of each other with
different cell sizes, which enables regions of different sizes to be stored on different layers.

The layers are shifted to guarantee that moving regions of a certain size always fit on a particular
layer. Shifting minimizes the number of layers, such that spatial queries can be executed reasonably
efficient. This is done by having three instances of the same layer which are displaced with respect to
each other.

The technique works even without prior knowledge of the data to be indexed, when applying the
self maintenance model. The model describes how to dynamically add and remove layers based on
approximation of object sizes.

The performance study shows that LSS, compared to R+-trees, is up to 35 times faster for modifi-
cations at the expense of being up to 11 times slower for queries.

STDW: A Multi-Dimensional Spatio-Temporal Data and Workload Generator

In the paper STDW: A Multi-Dimensional Spatio-Temporal Data and Workload Generator a data
and workload generator is presented. There are already a number of data generators available. However,
when testing an index structure it often involves a mix of inserts, updates and deletes. Therefore, a data
generator is not adequate. Here the workload generator can be utilized.

The existing data generators all have different weak points which make them difficult to use in con-
junction with a workload generator. Therefore, the paper presents both a data and workload generator,
which are designed to work together. Each of them can also be used stand-alone. The workload generator
can also be used in conjunction with other data generators.

The workload generator is able to add both spatial and temporal noise to data received from the data
generator, in order to make the output more realistic. The workload generator is also able to generate
range and k-NN queries and supply these with the results.

None of the existing data generators are able to produce data in more than two dimensions. STDW
is able to produce data from one to n dimensions.

The data generator operates with two abstractions, worlds and blocked spaces, which enables the
user to create an environment for the objects to reside within.

The performance shows that the generator is able to produce 27,000 object snapshots per second
on a standard PC. It also shows that the time consumption is linear in the number of dimensions and
objects.
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Abstract

The number of modifications is typically orders of magnitude higher than the number of queries
on a database that stores moving regions. However, the predominant index structure for moving
regions is the R+-tree and this structure handles spatial queries better than modifications. To
address this problem a new indexing technique called Layered Shifted Space-filling curves (LSS) is
presented. This technique is optimized for handling modifications. LSS is based on space-filling
curves. It uses layers in order to assign only a single index value to each region. The layers are
shifted to guarantee that moving regions of a certain size always fit on a particular layer. Shifting
minimizes the number of layers, such that spatial queries can be executed reasonably efficient. A
problem with canonical use of space-filling curves is that it requires prior knowledge of the data
to be indexed. A self maintenance method for the LSS technique is proposed which makes LSS
work without a prior knowledge of the data, e.g, world size. A performance study using the Oracle
DBMS compares LSS to Oracle’s R+-trees and existing space-filling curve approaches. This study
shows that LSS, compared to Oracle’s R+-trees, is up to 35 times faster for modifications at the
expense of being up to 11 times slower for queries.

1 Introduction

With the growth in mobile computing it has be-
come possible to constantly track the location of
moving objects; hence the need for location-based
services is increasing rapidly. Such services have
a wide variety of applications such as a shipping
company keeping track of its ships and containers,
biologists researching how shoals of fish are mov-
ing, and telephone companies knowing at all times
where their customers’ mobile phones are located.
These application areas have in common that the
location of the objects must be transmitted to the
relevant service.

One could imagine that the number of modifica-
tions is orders of magnitude larger than the number
of queries, and the ability to handle large numbers
of moving objects will be of even greater impor-
tance in the future as new location-aware services

arise. The European Union is about to launch its
GPS counterpart, the Galileo system [21], which
will provide more devices with location informa-
tion.

The predominant index structure for regions is
the R+-tree. However, it is expensive to maintain
under heavy updating [8]. This problem can be
solved by using a B+-tree, which performs better
than R+-trees when heavy modification occurs [8].
The B+-tree only supports indexing points in a one-
dimensional space. If regions are to be indexed by
a B+-tree, a mapping from two or more dimensions
to one is needed [11].

A space-filling curve is a method that is well
suited for reducing the dimensionality. The most
popular is the Hilbert space-filling curve that is
widely believed to have the best clustering proper-
ties [10]. The clustering properties of a space-filling
curve indicate how well it preserves the proximity
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of objects.
Canonical use of space-filling curves handles re-

gions that extend over multiple cells by storing it
multiple times. This may cause more I/O, as the
regions potentially are stored multiple times in the
database [3].

This paper introduces a layered technique for us-
ing space-filling curves that can be implemented
on top of an existing DBMS. This technique is
called Layered Shifted Space-filling curves (LSS).
This technique optimizes the modification speed of
the moving object in the DBMS as only one index
value is assigned to each object in order to store
the object only once in the database. The main
focus of this paper is on indexing moving regions
in a two-dimensional (2D) space.

This paper is structured as follows. Sections 2
and 3 present related work and background knowl-
edge, respectively. A technique for indexing mov-
ing regions using layered space-filling curves is pre-
sented in Section 4. Reducing the number of layers
by shifting is described in Section 5. Section 6 in-
troduces a self maintenance method for the LSS
technique. Algorithms for the two spatial queries,
range and k-NN, are the topics of Section 7. Sec-
tion 8 presents a performance study of LSS and
R+-trees. Finally, Section 9 concludes the paper.

2 Related Work

This section is structured as follows. First, related
work on the R-tree family is presented. Second,
work on indexing spatial objects using space-filling
curves is presented.

Indexing moving objects can be done in many dif-
ferent ways. Popular and efficient indexing struc-
tures are the R-tree [7] and the R+-tree [19]. Al-
though they are applicable in many different sce-
narios, there are problems with these indexing
structures. One particular problem is that sev-
eral directory rectangles may cover the same area,
which can lead to additional path traversals [2].
The R*-tree [2] was introduced as a method for
coping with these problems.

The TPR-tree [17] is based on the R*-tree. The
TPR-tree is very efficient for querying the current
and predicted future positions of moving points.
The paper also provides a workload generator that
simulates points moving along routes between des-

tinations, and generates both modification and re-
trieval queries. LSS differs from the work in [17] as
it proposes a technique for indexing the current po-
sitions of moving regions. This is practical because
knowledge about previous positions and trajecto-
ries are not needed.

As described in [11], B-trees have proven to be
a very efficient index for many different types of
data. Although the B-trees are intended for index-
ing points in a 1D world it can be used to index
multi-dimensional data by using dimensionality-
reducing techniques. The work in this paper is
similar to the work in [11] on how to index regions.
Here space is partitioned into cells of uniform size
and each cell is given a space-filling number. This
number could for example be assigned using the
Hilbert space-filling curve [5]. A region may not be
able to fit into a single cell. Therefore, one region
may be assigned multiple index values. In general,
multiple index values complicate both the indexing
and querying of regions [3].

To prevent a region from having multiple index
values, a layered or hierarchical approach is used
in this paper. This is similar to [23] that uses a
hierarchical main-memory structure to answer spa-
tial queries. However, LSS is based on B+-trees
and space-filling curves and is not a main-memory
technique.

In [3] a layered technique based on the Z-ordering
is presented. With this technique regions are only
assigned a single index value. This is similar to
LSS. However, LSS differs from the technique in [3]
by using shifted layers, where it is guaranteed that
regions of a given size always fit. LSS also differs by
having layers with divisions that are not 2n, which
the Hilbert space-filling curve requires [16]. The
use of not 2n divisions can minimize the number of
layers, and therefore fewer cells are needed to be
searched when querying.

3 Background

In this section the background knowledge on space-
filling curves and problems with the canonical use
of space-filling curves for indexing regions [3] are
presented. Finally, an example is introduced along
with the query types that will be focused on in this
paper.
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3.1 Space-Filling Curves

To index 2D objects using a B+-tree a reduction in
the number of dimensions is needed. This reduction
can be achieved by the use of space-filling curves.
When the space is, e.g., 2D, the location is approxi-
mated by a single number, instead of having to save
an object with a coordinate pair. This requires the
original space to be divided into a number of cells.
Each of these cells is given a space-filling number
according to the space-filling curve. The world is
divided using a static grid that has the following
properties. (a) It ensures all cells are of equal size.
(b) There is no overlap between cells, and (c) the
whole world is guaranteed to be covered by the grid.
Examples of space-filling curves can be seen in Fig-
ure 1, inspired by [18].

0 1 14 15
3 2 13 12
4 7 8 11
5 6 9 10

(a) Hilbert

10 11 14 15
8 9 12 13
2 3 6 7
0 1 4 5

(b) Morton

0 1 2 3
7 6 5 4
8 9 10 11
15 14 13 12

(c) Row-prime

Figure 1: Examples of space-filling curves

A space-filling curve is designed to preserve the
clustering properties when mapping to one dimen-
sion. According to [10] it is widely believed that
the Hilbert space-filling curve has the best cluster-
ing properties.

When dealing with points only, the canonical ap-
proach in Figure 1 is very useful. But when us-
ing space-filling curves for regions several problems
arise.

• Canonical use of space-filling curves is a map-
ping of a point in a multi-dimensional space
to a single number. However, with regions a
mapping of 2D objects in a 2D space into a
single number is wanted.

• A region might not be able to fit into exactly
one cell in the grid, e.g., in Figure 1. Therefore,
a single region may be required to have several
different index values, which requires more I/O
when modifying the regions [3].

To avoid giving a single region several index val-
ues the cell size can be adjusted according to the

largest region in the population. Although the cell
size is larger than any region, it still cannot be guar-
anteed that a region would not intersect cell bor-
ders. Furthermore, when dealing with regions that
change size, it may be impossible to predict their
maximum size.

3.2 3D Space-Filling Curves

In the previous section 2D usage of space-filling
curves was presented. However, many space-filling
curves can be used in more dimensions, e.g., the
Hilbert space-filling curve can be used in n dimen-
sions [9]. Figure 2 illustrates the Hilbert space-
filling curve in three dimensions.

0

1

3 4

2 5

6
7

Figure 2: Hilbert space-filling curve in 3D

3.3 Query Types

Two important spatial queries are the range and
k nearest neighbor (k-NN) queries. A range query
[13] selects all objects within a certain rectangular
area. A query of this type could be to ask “which
taxis are within city limits?”. A k-NN query [15]
selects the k nearest objects to a given point. An
example could be when a customer requests a taxi;
the service employee would inquire “which are the
10 nearest free taxis to this customer?”. Examples
of these query types are illustrated in Figure 3.

(x,y)

(x,y)

(a) Range

(x
,
y)
k

(b) k-NN

Figure 3: Examples of query types

In Figure 3(a) the black rectangle illustrates the
range query. In Figure 3(b) the circle illustrates the
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result set of the k-NN query. That is the smallest
circle with center (x, y) which intersects k objects.

For the 3D case the range query is extended by a
z-dimension, so the query area is a cuboid, that is a
3D rectangle. With this range query the approach
is the same as above. All objects that intersect with
the cuboid are contained in the result set.

For k-NN in 3D, a query point (x, y, z) is selected.
Then the k nearest neighbors are returned, with
respect to the distance to the nearest neighbors in
any dimension. The result set can be visualized as
a sphere.

3.4 Index Measurement

In order to measure the quality of an index tech-
nique, two metrics termed dead space and index se-
lectivity are used in this paper. In this section only
the 2D case is examined.

When a region is smaller than the cell size, dead
space occurs. The area not occupied by an object
in the cell, in which it resides, is called dead space.
Dead space may lead to false positives. A false
positive is an object that is retrieved by the index
to answer a query but not part of the result set.
Dead space is a number between 0 and 1 where a
lower number is better. The smaller the number
the more of the cell is occupied by the object. The
dead space is given in Equations 1 and 2. It shows
that for each object in the database the object size
is subtracted from the cell size and then divided by
the cell size. The variable db represents the set of
all objects in the database and |db| is the number
of objects.

ds =
∑

obj∈db

objcellSize − objobjectSize

objcellSize
(1)

dead space =
ds

|db|
(2)

Index selectivity is also a number between 0 and
1. It is the average number of result set candidates
that must be examined, when using only the index,
in a range query for a single point. That is, how
many objects cannot be filtered out solely based
on the index. Equations 3 and 4 show how index
selectivity is calculated. Note that x and y are
repeated in Equation 3 in order to make a point
appear as a region.

is =
∫ wy

0

∫ wx

0

|range�(x, y, x, y)|
|db|

dxdy (3)

index selectivity =
is

wx · wy
(4)

The variables wx and wy are the lengths of the
sides of the world. In Equation 3 range� is de-
fined as the range query that returns both true and
false positives from cells intersected by the rectan-
gle used in the query. This can be visualized as
a range query, where all the regions have been ex-
tended to the same size and shape of the cells in
which they are contained.

A simple example is shown in Figure 4 with four
regions. The numerator of Equation 3 is shown
in Figure 4(b) which is based on the placement of
the objects from Figure 4(a). Note that this func-
tion is not differentiable. However, it can be com-
puted using Riemann sums [4]. Finally, the result
is normalized to the size of the world in Equation
4. The index selectivity of Figure 4 is 28.125%
as is = 18

4 = 4.5 and thereby index selectivity is
4.5
4·4 = 28.125%.

(a) Example
data set

0 1 1 0
1 2 3 0
2 2 2 1
1 1 1 0

(b) Range�

Figure 4: Example of index selectivity

Lower index selectivity is better, as fewer false
positives are returned from the index.

4 Layered Space-Filling Curves

As a first step in trying to overcome the problems
with the canonical use of space-filling curves out-
lined in Section 3.1, layered space-filling curves are
introduced in this section.

4.1 A Layered Approach

The LSS indexing technique described in this paper
assigns only one index value to each region. LSS
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makes modifications faster compared to the canon-
ical Hilbert as the region only needs to be stored
once in the database. An example of a table, tab,
is shown in Figure 5. The id column is the primary
key, the geometry column is the actual spatial re-
gion, and the column iv (index value), which is the
space-filling number of the cell in which the object
resides. The last column, data, symbolizes other
columns.

id geometry iv data
1 ((0.2, 0.3), (0.4, 0.4)) 0 . . .
2 ((0.7, 0.3), (0.9, 0.4)) 3 . . .
3 ((0.6, 0.7), (0.6, 0.9)) 2 . . .

Figure 5: Example of table tab

Instead of looking at the world as only one plane
divided into cells, this paper looks at the world as
a set of planes on top of each other. Each of these
planes is called a layer. They have the following
properties.

• Layers are numbered bottom-up starting with
0

• Cells are numbered using a space-filling curve

• The top layer contains only a single cell

• A layer always has more cells than any layer
above it

• The smallest space-filling number is 0 and the
largest is the number of cells minus one

• Space-filling numbers on one layer are always
larger than any number on any layer below

Note that the last two bullets ensure that cell
numbers are unique across layers. An example with
three layers is shown in Figure 6(a). The layers use
the 2n divisions [4, 2, 1]. This means that the index
is divided into 4× 4 cells at Layer 0, 2× 2 at Layer
1, and 1 × 1 at Layer 2. The 2n division enables
use of the Hilbert space-filling curve. In the figure
the arrows illustrate where the numbering ends at
one layer and where it begins at the next layer.

When an object is inserted, it is pushed through
the layers top-down, until it cannot fit into a cell,
i.e., touches a cell border, and it is then stored on
the layer above. When updating an object, the
same approach is used, i.e., the object is pushed

0 3
4

5

1
2

7
6

14
13

8
9

15
12

11
10

16
17 18

19

20

Layer 0

Layer 1

Layer 2

(a) A 2D LSS with divi-
sions [4, 2, 1]

Layer 3 14
Layer 2 12 13
Layer 1 8 9 10 11
Layer 0 0 1 2 3 4 5 6 7
(b) A 1D LSS with divisions
[8, 4, 2, 1]

Figure 6: Layered Hilbert space-filling curves

through the layers and the index value of the object
is set to the space-filling number of the new cell.
When deleting, the object is simply removed from
the database.

Figure 6(b) is an example of the model in 1D
where the cells are numbered sequentially. Note
the example is only in one dimension for the sake of
simplicity. The black and gray boxes symbolize two
regions (intervals) and show on which layers they
can fit into a cell. When a region touches a line,
it indicates that this is where the region is actually
indexed. The figure shows that the black region is
pushed down to Layer 0 and given the index value
2. The gray region cannot fit into the cell on Layer
1 as it will touch the cell border between 10 and
11. Therefore, it is stopped at Layer 2 and given
the index value 13. It is important that the objects
are pushed to the lowest possible layer in order to
achieve index selectivity and decrease dead space.
Therefore, it would have been better if the gray
region could have been pushed all the way down to
Layer 0.

4.2 3D Layers

In the previous section, 1D and 2D cases were pre-
sented. Going from 2D to 3D is straight-forward.
At each layer the third dimension (the z-axis) is
added with the same division as on the other axes.
Then the world is a cuboid, divided into smaller
cuboidical cells. Figure 7 shows a 3D LSS with the
divisions [4, 2, 1].

When indexing objects, the same approach is
used as in Section 4.1. If an object touches a cell
border (in the 3D case a cuboid side) the object
must be saved on the layer above.
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Layer 0 Layer 1 Layer 2

Figure 7: A 3D LSS with divisions [4, 2, 1]

4.3 Layer Expansion

The Hilbert space-filling curve and other space-
filling curves require that the layer must be divided
into 2n cells in each dimension where n ∈ Z+. If
there are not 2n divisions the layer must be ex-
panded in order to apply the space-filling curve.
The number of divisions of the current layer is
called d, and the lengths of the sides of the world
are called wx and wy. The lengths of the sides of
the new layer are denoted lx and ly

d′ = 2dlog2(d)e (5)

Now d′ is defined as the smallest 2n number
larger than or equal to d as shown in Equation 5.
The layer can be expanded with the missing cells
by applying Equation 6. Note that Equation 6 only
calculates wx. The same must be done for wy.

lx = wx +
wx

d
· (d′ − d) (6)

Figure 8(a) outlines an example where d is 3 and
shows that the number of divisions is increased so
d′ is 4. Note that the dotted cells will never be
used for indexing, but are only used for applying
the space-filling curve.

wx

w y

lx

l y

(a) An example of
layer expansion

Layer 3 14
Layer 2 12 13
Layer 1 8 9 10
Layer 0 0 1 2 3 4 5 6 7

11

(b) Indexing a region using the di-
visions [7, 3, 2, 1]

Figure 8: Expanding the world

When introducing a layer with divisions not
equal to 2n it is not suitable to use the top-down
insert strategy described in Section 4.1, where an
object is pushed down through the layers until it

hits a cell border. Instead, a bottom-up strategy is
introduced where an object is pushed from Layer
0 and upwards until it hits a layer where the ob-
ject fits a cell. Figure 8(b) shows that the black is
stored on Layer 0 and given the index value 2 as
this cell is the first from the bottom-up it can fit.
The gray region fits on Layer 1 and Layer 3. Using
the bottom-up strategy it will be stored on Layer
1 and given the index value 9. Note that Layer 0
originally had seven divisions, but as this is not a 2n

number, the layer is expanded into eight divisions.
The same procedure follows with Layer 1.

4.4 Non-Overlapping Grids

Looking at Figure 6(b), if a region is positioned in
the middle of the world it would have to be pushed
all the way up to Layer 3, resulting in poor selec-
tivity and increased dead space. To overcome this
problem, cell borders are not shared across the lay-
ers.

A strategy for finding non-sharing cell borders
is to select a set of divisions, D, that are relative
prime as shown in Equation 7 where gcd(a, b) is the
greatest common divisor of a and b.

∀d, e ∈ D : d 6= e ⇒ gcd(d, e) = 1 (7)

Relative primes are used because if a region
touches a cell border at one layer, this border will
not be in the same location at any other layer. This
makes it more likely to find a cell at a low layer
where the indexed regions do not touch any cell
border.

Theorem 1 shows that if the set of divisions are
relative prime then no grid on any layer will over-
lap. The variables x and y are positive integers,
that symbolize places where divisions are possible.

In the following theorem and proof, lcm(a,b) is
the least common multiple of a and b. a|b means
that a is a divisor in b, i.e., b

a ∈ N.

Theorem 1

∀x, y, d, e ∈ N : gcd(d, e) = 1 ∧ x < d ∧ y < e

⇒ x

d
6= y

e

Proof: There are three different cases, d = e,
d < e, and d > e. If d = e, from gcd(d, e) = 1 it is
known that d = e = 1 and there is no x < d = 1,
hence the precondition is always false.

8



Now for the two latter cases. In the following it
is assumed, without loss of generality, that d < e.
Now again there are three cases, x = y, x > y, and
x < y.

• If x = y and d < e meaning d 6= e then x
d 6=

x
e .

• If x > y and d < e then x
d > y

e , since some-
thing large, x, divided by something small, d,
is always larger than something small, y, di-
vided by something large, e.

• Now the last case x < y. x
d 6=

y
e ⇔ x · e 6= y ·d.

If x·e = y·d, it must hold that (x·e)|(y·d). It is
known that if gcd(p, q) = 1 ⇒ lcm(p, q) = p ·q.
The smallest y′ ∈ N, which can be multiplied
with d such that (x · e)|(y′ · d), is y′ = e, but
y < e and hence it is not possible to find such
a y and the inequality is fulfilled.

�
When looking at Figure 6(b) it can be seen that

two regions of the same size are placed on two differ-
ent layers. Therefore, the focus of the next section
is to ensure the regions are stored on the lowest
possible layer.

5 Shifted Layers

A problem with the indexing technique described
in the previous section is that a single-celled top
layer is needed to ensure that all regions can be
indexed even if the largest region is much smaller
than the world. This cell, covering the whole world,
is needed because no other layer gives any guaran-
tee about the size of the regions that can be in-
dexed. The top layer has a poor selectivity and
dead space is increased dramatically. One way of
ensuring that only few regions are indexed at the
top layer is to have many layers. This makes it
possible to reduce dead space when placing mov-
ing regions. However, having many layers results
in poor query performance, because a query has to
look at all layers. These problems are addressed in
this section. Sections 5.1, 5.2, and 5.3 focuses on
2D. Section 5.4 generalizes some of the results from
Sections 5.2 and 5.3 to three or more dimensions.

5.1 Shifting a Layer

A shifted layer is a layer that guarantees that re-
gions of a given maximum size always fit on this

layer. This is beneficial, e.g., when knowing the
typical size of regions. A 2D shifted layer has the
following properties.

• It consists of three sub-layers that are shifted
with respect to each other

• The numbering at each sub-layer is unique

Figure 9 shows a shifted layer with three divi-
sions. The bottom layer illustrates an expansion of
the world as shown in Figure 8(a). The subscript
3 symbolizes a shifted layer.

0 3 42 45
9 6 39 36
12 21 24 33

15 18 27 30
1 4 43 46
10 7 40 37

13 22 25 34
16 19 28 31

2 5 44 47
11 8 41 38

14 23 26 35
17 20 29 32 Sub-layer n

Sub-layer n
Sub-layer n

Figure 9: 2D shifted layer (d = 33)

Any layer in the technique described in Section 4
can be replaced by a shifted layer. If a maximum
size of regions is known then the top layer can be
replaced by a shifted layer. Otherwise, the single-
celled top layer is still needed.

A shifted layer that guarantees regions of up to
ox in the length on the x-dimensions and up to oy

in the length on the y-dimension can be created.
A division for such a layer is found using Equation
8 where wx and wy are the lengths of the sides of
the world. The dx and dy are the numbers of divi-
sions on the x- and the y-dimensions respectively if
the region was three times bigger. The reason for
choosing three is that it is the smallest number of
times a layer must be shifted to be able to contain
a region of a certain size. This will be elaborated
in Section 5.4. Finally, the divisions for the layer
are calculated which is the minimum of the two dx

and dy floored. Note that floor is the largest inte-
ger smaller than the input and therefore ceil minus
one is used.

dx =
wx

3 · ox
dy =

wy

3 · oy
d = dmin(dx, dy)− 1e

(8)
When shifting, the layer is copied twice so there

are three identical instances of the layer. This is
called shifting three times. The second and the
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third sub-layers are shifted wx

3d and 2wx

3d to the left,
respectively. They are also shifted wy

3d and 2wy

3d
down in the 2D case, respectively. Figure 10(a)
shows an example in 1D of a shifted layer with
three divisions (note that in 1D only two sub-layers
are needed, but in 2D three sub-layers are needed).
Figure 10(b) solves the problem from Figure 6(b)
where two regions of equal size were placed on lay-
ers with significantly different dead space.

Sub-layer n

Sub-layer n

Sub-layer n

(a) Shifted sub-layers in
1D where d = 3

Layer 2 16Sub-layer 12 6 9 12 15
Sub-layer 11 5 8 11 14

Layer 0 0 1 2 3

Sub-layer 10 4 7 10 13

(b) 1D example with divi-
sions [4, 33, 1]

Figure 10: Shifted layers

5.2 Applying Space-Filling Curves

Now space-filling curves must be applied to the
layer. Any non-shifted layer below the shifted layer
is numbered as described in Section 4.1. The num-
bering at the shifted layer starts with the largest
number below plus one. The next layer above, re-
gardless whether it is shifted or not, will also start
with the largest number at the shifted layer plus
one.

A shifted layer consists of three identical copies of
the layer and therefore the three sub-layers have the
same number of cells. The numbering of the orig-
inal layer is the space-filling numbering with the
only difference that it is multiplied by three. The
second sub-layer is given the space-filling number-
ing multiplied by three and added one. On the last
sub-layer the space-filling number is multiplied by
three and two is added. This is illustrated in the
1D example in Figure 10(b) and in 2D in Figure
9. Note that the three sub-layers are considered to
be one layer because the space-filling curve on the
three sub-layers interleaves. This is done to take
advantage of the proximity property of the space-
filling curve.

5.3 Modifying Objects

When an object is indexed using a shifted layer
a slightly different approach, compared to the ap-

proach in Section 4.1, is used for assigning index
value to the object. It is tested if the object fits
the first sub-layer, that is Sub-layer n0 in Figure
9. If the object fits, it is assigned the space-filling
number of this cell. If the object does not fit at
the first sub-layer, it is shifted wx

3d to the right and
wy

3d up. Recall d is the number of divisions, and w
is the size of the world. If the object now fits at
the first sub-layer it is assigned the original space-
filling number plus one. This is equivalent to a
region fitting into Sub-layer n1 in Figure 9. If the
object does not fit at the second sub-layer either,
it is again shifted wx

3d to the right and wy

3d up. If
the object now fits at the first sub-layer it is as-
signed the original space-filling number plus two.
This is equivalent to a region fitting into Sub-layer
n2 in Figure 9. If the object does not fit at any of
the sub-layers it is tested at the next layer. Note
that by always trying to place objects at the lowest
possible sub-layer, the number of different indexed
cells containing objects is reduced.

When the divisions for the shifted layer are cho-
sen from the maximum size of the regions, and all
regions are of this size, the dead space for a cell is
at least 8

9 as the region only occupies 1
3 of the cell

on each dimension in the 2D case.

1 function getIndex(ox1 ,oy1 ,ox2 ,oy2 ,D)
2 foreach(d ∈ D)
3 if (d ∈ {n3|n ∈ N}) S←[0, 1

3 , 2
3 ]

4 else S←[0]
5 foreach(s ∈ S)

6 o′x1
←b d·ox1

wx
+ sc, o′y1

←b d·oy1
wy

+ sc

7 o′x2
←b d·ox2

wx
+ sc, o′y2

←b d·oy2
wy

+ sc
8 if (o′x1

= o′x2
∧ o′y1

= o′y2
)

9 return hilbert(o′x1
, o′y1

, d, D, s)

Listing 1: Calculating index value for an object

Listing 1 shows the algorithm for calculating the
index value for a region. The function takes in (Line
1) the coordinates for the lower left corner of the
MBR (ox1 , oy1), and the upper right corner of the
MBR (ox2 , oy2) and D which is the set of divisions.
Lines 2–9 iterate through the layers. Lines 3–4 ex-
amine whether the layer is shifted or not. Lines
5–9 iterate through the sub-layers. Lines 6–7 cre-
ate an integer coordinate-set that represents which
cell the corners are in. The variable s is added in
order to move the region, in order to fit into the
shifted layers. Line 8 examines whether the whole
MBR is inside a cell. The Hilbert number is calcu-
lated for the object on the given sub-layer on the
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given layer in Line 9.

1 function insert(oid,ox1 ,oy1 ,ox2 ,oy2 ,D,data)
2 i=getIndex(ox1 ,oy1 ,ox2 ,oy2 ,D)
3 INSERT INTO tab (id, geometry, iv,data)

VALUES (oid, i, region(ox1 ,oy1 ,ox2 ,oy2 ),data
)

4
5 function update(oid,ox1 ,oy1 ,ox2 ,oy2 ,D,data)
6 i=getIndex(ox1 ,oy1 ,ox2 ,oy2 ,D)
7 UPDATE tab SET iv=i, geometry=region(ox1 ,

oy1 ,ox2 ,oy2 ), data=data WHERE id=oid

8
9 function delete(oid)

10 DELETE FROM tab WHERE id=oid

Listing 2: Insert, update, and delete algorithms

Listing 2 shows the algorithms for insert, update,
and delete. It shows that with insert and update
the index is calculated with the getIndex function
in Lines 2 and 6. When index value is calculated
it can be used for the modification. In Line 3 the
insert is actually performed where the object is in-
serted into the table tab with the index value i.
The update is performed in Line 7 where the ob-
jects in table tab are updated with the new position
and new index value. Delete is done in Line 10 and
is straight forward.

5.4 nD Shifting

When working in, e.g., 3D it is not enough to shift
the layers three times. Consider a shifted layer with
the division 2 and the world size 6. At Sub-layer 0
there is a cell borders at positions 0, 3, and 6. At
Sub-layer 1 there is a cell border at position 2 and
5. Finally, at Sub-layer 2 there is a cell border at
position 1 and 4.

Furthermore, consider a cube, 0.2 × 0.2 × 0.2
in size, where the bottom left corner is located at
(0.9, 1.9, 2.9). This object is not able to fit on any of
the sub-layers as it will overlap a cell border from
each sub-layer. Figure 11(a) shows each dimen-
sion separately in a layer shifted three times. All
cell borders are illustrated on each dimension. Cell
borders from different sub-layer are illustrated with
different line types on each dimension. The figure
shows the cube touches a cell border from different
sub-layers at each dimension. Therefore, no sub-
layer can be found where the cube does not touch
a cell border.

For shifting to work in three dimensions, four
shiftings are needed, as there would be a sub-layer
where the cuboid does not touch a cell border. This

x-axis

y-axis

z-axis

0 3 6
(a) Three sub-layers

x-axis

y-axis

z-axis

0 3 6
(b) Four sub-layers

Figure 11: Each dimension from a 3D shifted layer

is shown in Figure 11(b) where the object is able to
fit on the sub-layer with the cell border illustrated
with the solid lines.

Theorem 2 In n dimensions, n + 1 shiftings are
needed to guarantee that objects with a spatial ex-
tend no larger than c

n+1 on each dimension can fit
a cell with the size c in this dimension.

Proof: Assume c = 1 for each dimension. Each
cell on each dimension is split into n + 1 equally
sized sub-parts, that are exactly 1

n+1 . As the ob-
jects are at most 1

n+1 they can only fit over two of
these sub-parts in each dimension, that is one bor-
der between sub-parts. At most n sub-part borders
are overlapped, but there are n + 1 borders; hence
one is free. This final sub-part border represents
the sub-layer on which the object fits. �

When shifting four times in 3D the guaranteed
object size is 1

4 of the cell size. This has the con-
sequence that the divisions must be larger in or-
der to still guarantee the same maximum object
size. This leads to worse index selectivity and dead
space. In practice only 3

3 ·
2
3 ·

1
3 = 6

27 of the previ-
ously guaranteed objects touches cell borders from
each sub-layer. Furthermore, if the objects are only
half of the guaranteed size 6

27·8 = 1
36 has this prob-

lem. The hypothesis is that, index selectivity wise,
it is often more feasible to let objects not fitting
this layer be placed on other layers. This should be
compared to doing four shifts, which increases the
index selectivity to

(
4
3

)3 ≈ 2.37 times its original
value.

6 Self Maintenance

The LSS technique described in the preceding sec-
tions depends on knowledge of the data to be in-
dexed, that is size of the objects and size of the
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world. If the user does not have this knowledge
the index performance may degrade as all objects
potentially will end up on the top-layer or an ob-
ject resides outside the world. Therefore, in order
to have the same capabilities as the R+-tree the
LSS technique must also be able to perform with-
out knowledge of the data. This section describes
such a self maintenance-model.

6.1 Applying Self Maintenance

In order to apply self maintenance to the LSS tech-
nique the following aspects must be considered.

• What should the world size be?

• When should a layer be added?

• When should a layer be deleted?

• Which divisions should be used for the layers?

All these questions must be answered before the
technique is self maintaining. To decide whether
changes must be made to the layers, they must be
examined periodically. This could for example be
for every 5, 000 modifications, or at 15 minute in-
tervals.

6.2 World Size

As described in Section 4 the LSS technique can in-
dex a predefined area, called the world size. How-
ever, if this area is not known in beforehand, the
technique cannot be used. In order to make the
LSS technique able to work, even when not know-
ing the world size, some changes to the layers must
be made.

Instead of having a fixed world size for all layers,
a fluid world size is introduced, where each layer
has its own size. Initially, only a single-cell top
layer is added with the size [−∞;∞] × [−∞;∞]
for the 2D case. This layer is able to index all
regions no matter where they are located. Other
layers are added later and will have their own size.
Therefore, regions are always able to be indexed,
in all cases at the top layer. The layers have the
following properties in the 2D case:

• The top layer has the size [−∞;∞]× [−∞;∞]

• New layers are larger or equal size of all other
layer, excluding the top layer

• The cell size on a layer is always larger than
on the layers below

A 1D example is shown in Figure 12(a) with the
divisions [6,2,4,1]. Here Layer 1 was added first
(the smallest). Afterwards Layer 2 was added, and
as it has larger cells than Layer 1 it is placed above
Layer 1. Finally, Layer 0 was added, and as it has
the smallest cell size it was placed in the bottom.

In a self maintaining LSS the world size is de-
fined as the MBR of all regions ever indexed. When
adding a new layer, this should have at least the size
of the world.

Layer 3

Layer 2

Layer 1

Layer 0

0

1 2

3 4 5

7 8 9 10 11 12

6

(a) Self maintaining LSS
with divisions [6, 2, 4, 1]

0

5

10

15

20

1

per cent

time

set-up normal tear-down

(b) Phases for a self maintain-
ing layer

Figure 12: Examples of self maintenance

Self maintenance works by dynamically adding
and deleting layers. A layer is added when it con-
tributes significantly to the index selectivity. Lay-
ers are deleted when the number of objects on the
layer is too low.

6.3 Adding a Layer

As a rule, a new layer must be added when the
gain of adding this layer exceeds a given threshold.
This gain is approximated using the index selectiv-
ity. The default threshold value is 50% better index
selectivity. However, it is not desirable to look at
all the data (sequential scan) in order to calculate
the index selectivity as this potentially is very time
consuming. Therefore, a new column is added to
the schema from Figure 5 called diagonal. This
column holds a scalar value representing the length
of the diagonal of the region indexed. On this col-
umn a B+-tree index is maintained so the sizes of
the regions can be retrieved based solely on the in-
dex.

A new layer is marked with a time stamp in order
to give it time for indexing regions. This phase is
called the set-up phase as shown in Figure 12(b).
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If the layer was not marked with a time stamp, it
would immediately be marked for deletion in the
next examination as the layer did not have time to
index enough regions. After a given time interval
or a number of modifications, the new layer will be
considered on an equal footing as all other layers.
This phase is called the normal phase in Figure
12(b). The default value is the total number of
objects in the database.

1 function getNewLayer(D, diagonals)
2 bests←1, bestd←1
3 foreach(d←2 to maxdiv)
4 dpos←minwpos, dsize←maxwsize

5 D′←D ∪ {d3}
6 s←approximateSelectivity(D′, diagonals)
7 if (s < bests)
8 bests←s, bestd←d
9 s←approximateSelectivity(D, diagonals)

10 if (bests ≤ selthreshold · s)
11 return bestd

Listing 3: Algorithm for adding a new layer

Listing 3 shows the algorithm for adding a new
layer. In Line 1 the function takes in two parame-
ters, D which is the divisions and diagonals which
is a histogram [20] of the column diagonal. In Line
2 bests, holding the best selectivity found, is initial-
ized to 1 and bestd, holding the layer that must be
added to achieve the selectivity bests, is also initial-
ized to 1. Lines 3–8 iterate through each candidate
layer, d, from 2 to a predefined maximum number
of divisions (default 100). In Line 4 d is given the
size of the world and added to D in Line 5. The
selectivity for the new D′ is approximated in Line
6. How this approximation is done is the subject
of Section 6.5. In Lines 7–8 bests and bestd are up-
dated if the current candidate layer has better se-
lectivity than any previous candidate layer. Then
in Lines 9–11 the selectivity without any candidate
layer is approximated and compared to the best
candidate layer. The candidate layer is returned if
it gives better selectivity. The variable selthreshold

is as default 0.5, which is 50% better selectivity.

6.4 Deleting a Layer

A layer is deleted when the number of regions on
the layer is under a given percentage of the total
number of regions indexed. This threshold could
for example be 10% of the total number of regions
indexed, otherwise selectivity is too poor. This
phase is called the tear-down phase as shown in
Figure 12(b).

For this approach to work the layers must be ex-
amined periodically in order to find out how many
regions there are on each layer. As a B+-tree index
is maintained on the iv column, these queries can
be answered using only the index. Furthermore, as
the result does not need to be 100% correct, the
query can also be executed as a non-blocking call.

When a layer contains less regions than the
threshold it is marked for deletion. This is done,
because if a layer is deleted immediately it would be
expensive, as there are still regions on it, and mov-
ing the remaining regions may be time consuming
as this requires many updates. Therefore, the layer
is only marked for deletion which means that in fu-
ture inserts and updates the layer is not considered
as a potential layer for the region to be modified.

When a layer is marked for deletion, gradually
there will become fewer regions on it, as they are
updated. As the focus of this paper is scenarios
with many modifications it is assumed that most of
the regions on the layer are updated within reason-
able time. When the layer is marked for deletion it
is given a time stamp for when it should be empty.
As default this value could be the total number of
objects indexed, as then statistically most objects
should have been updated.

Listing 4 shows the algorithm for marking a layer
for deletion. Lines 2–6 iterate through all the lay-
ers. Line 3 examines if the layer has entered the
normal phase. If this is the case then in Line 4 it
examines if the number of objects is under a given
threshold. If it is then the time stamp for dele-
tion is added in Line 5 and the layer is marked for
deletion in Line 6.

1 function getLayersForDeletion(D)
2 foreach(d ∈ D)
3 if (hasFinishedSetUp(d))

4 if (
dcount
|db| < objteardownT hreshold)

5 dteardown←now + timestampoffset

6 Del←Del ∪ d
7 return Del

Listing 4: Algorithm for layer tear-down

When the time has passed where the layer should
be empty, or the number of regions that are left on
the layer is under a given threshold, the remaining
regions will be removed from this layer. Either the
regions are forced to a new layer where they fit the
best or they are all placed on the top layer. Due
to simpler calculations the second choice is used
here. When the layer is completely empty, it can
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be deleted, and thereby no longer considered when
querying.

1 procedure deletingLayers(D)
2 foreach(d ∈ D)

3 if (dteardown > now ∨ dcount
|db| < objdeleteT hreshold

)
4 UPDATE tab SET iv=0 WHERE iv

BETWEEN dminIv AND dmaxIv

5 D←D\{d}

Listing 5: Algorithm for deleting layers

Listing 5 shows the algorithm for deleting a layer.
Lines 2–5 iterate through all the layers. Line 3 ex-
amines if the time has passed for deletion or the
number of objects is under a given threshold. The
variable dteardown is the time stamp for when the
layer should be deleted. objdeleteThreshold is the
threshold for how few objects there are on the layer
before it is feasible to delete the layer. In Line 4
the remaining objects on the layer are placed on
the top layer (space-filling number 0). In Line 5
the layer is finally deleted.

6.5 Approximating Index Selectivity

The strategy for approximating the index selectiv-
ity is to approximate the number of objects on each
layer.

The best approximation of the object is of course
the object itself but as this requires a full table
scan at each examination, this would be expensive.
Therefore, the position of the object is disregarded
as, with enough objects, according to the law of
averages [22], this should even out. When approx-
imating the shape and size of the object, without
actually knowing the length of the sides, this can
be done in at least three different ways; the area,
the circumference, or the diagonal length. In Fig-
ure 13 a region of size 1× 1 is approximated using
these three methods.

Figure 13 shows which shapes a region can take
when using the different methods. The lower left
corner is placed in (0, 0) and the upper right corer
is placed on one of the three lines. The x- and y-
axis in the figure represents the x- and y-sizes of
the region. It can be seen from the figure that the
diagonal length is the best approximation of the
length of the sides because all possible regions has
shorter, meaning closer to 1, sides than the other
approximation methods.

1 2

1

2

√2

√2

Volume
Circumference
Diagonal

x-size

y-size

0
0

Figure 13: Approximating the region 1× 1

Only a histogram of the diagonal length is
needed. This speeds up calculations and with many
regions it should not matter to know the exact size
of each diagonal as, according to the law of aver-
ages, the roundings should even out.

In order to calculate the probability of an object
fitting on a layer the probability of the object not
overlapping at least one cell border from each sub-
layer is calculated. This is done using the diagonal
length.

In the unshifted case it is much easier to calcu-
late the probability of an object fitting on a layer
compared to the shifted case. The probability for
the unshifted case is given by Equation 9 where
objsizedim is the size of the object in the given di-
mension, and cellsizedim is the size of the cells at
the given layer. p is the probability of an object
not overlapping a cell border on a layer.

As only the diagonal length is stored in the
database, and not the actual lengths of the sides,
Equation 9 can be generalized to Equation 10 where
objsizediagonal and cellsizediagonal are the length of
the diagonal of the object and cell on the layer re-
spectively. It is assumed that the object has the
same shape of the cell it is in as only the diagonal
is stored. Therefore, it is only necessary to apply
Equation 10.

p =
dimensionality∏

dim=1

1− objsizedim

cellsizedim
(9)

p =
(

1− objsizediagonal

cellsizediagonal

)dimensionality

(10)

When a layer is shifted, the above approach can-
not be used. In the rest of this section a layer
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shifted three times is assumed. This approach
works for n dimensions.

The first values to be calculated are the probabil-
ities for not touching one, two or three cell borders
from different sub-layers (p′1, p′2, and p′3) in one di-
mension. This means that, e.g., p′2 is the probabil-
ity for an object not touching two cell borders from
two different sub-layers. This is shown in Equation
12; note that cellsize′diagonal is cellsizediagonal

3 . The
intuition for p′1 in Equation 12 is the same as Equa-
tion 10 for one dimension. The intuition for p′2 and
p′3 is that the object is shortened 1

3 and 2
3 of the

cell diagonal and then the same procedure as from
Equation 10 is used.

To simplify notation the function ϕ is introduced
in Equation 11, it returns 0 if the input is less than
0, 1 if it is larger than 1 and the input otherwise.

ϕ(x) =

 0 x < 0
x 0 ≤ x ≤ 1
1 1 < x

(11)

p′1 = 1− ϕ
(

objsizediagonal−cellsize′diagonal·0
cellsize′diagonal

)
p′2 = 1− ϕ

(
objsizediagonal−cellsize′diagonal·1

cellsize′diagonal

)
p′3 = 1− ϕ

(
objsizediagonal−cellsize′diagonal·2

cellsize′diagonal

)
(12)

Figure 14 contains three binary probability trees
[14], which is an assignment to the leftmost variable
(pi) of the probability of reaching any state labeled
1 (not overlapping one, two or three cell borders).
In each binary node only one outgoing edge has its
probability, q, specified. The probability for the
other edge is 1− q.

Equation 12 only gives the result in one dimen-
sion, so in order to get the probability for n dimen-
sions, the binary probability trees in Figure 14 must
be used once for each dimension, that is a loop over
dimensionality. p1, p2, and p3 should be initialized
to 1. In the binary probability trees, p1, p2, and
p3 refer to the probability from after the previous
loop. This can easily be implemented by calculat-
ing p3 first, p2 second, and p1 last, as p2 only refers
to p2 itself and p1. Furthermore, p1 only refers to
itself.

After applying, e.g., Figure 14(b) once for each
dimension p2 is the probability of an object not
touching cell borders from two different sub-layers.
The intuition for Figure 14(b) is (from left to right);

first of all, if the object has already touched two
different cell borders from different sub-layers in a
previous run (1 − p2), then the result is 0. Other-
wise, if the object touches two cell borders in the
current dimension (1 − p′2), then the result must
also be 0. At this point the fact is that at most one
cell border is touched in the current dimension. So
if no cell borders were touched in a previous run
(p1), then at most one cell border is touched. On
the other hand if one cell border has been touched
in a previous run (1−p1), but no more are touched
in this dimension (p′1), then only one cell border is
touched. The final case is that one cell border was
touched in the previous run (1 − p1) and one cell
border also is touched in this dimension (1 − p′1).
Now there is 1

3 probability that it is the same cell
border that has been touched and thereby still only
one cell border has been touched. On the other
hand, there is 2

3 probability that it is not the same
cell border, and thereby two different cell borders
have been touched and the result should be 0.

p3 0

1

0
1 0

p3
p3

p2

p1 p2 0.333
1 1 1

´

´
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(a) Calculating p3

p2 0

1

0p2
p2́

0

1 1p1́
p1

0.333

(b) Calculating p2

p1 0

1

0p1
p1́

(c) Calculating p1

Figure 14: Calculating p3, p2 and p1

This sums down to Listing 6. Line 1 takes
in the layers, D, and the histogram of diagonals,
diagonals. Lines 2–18 iterate over each entry, dia,
in the histogram. obj, which represents the per-
centage of times the object does not fit on a lower
layer, is initialized to 1 in Line 3. Lines 4–18 iter-
ate through each layer where Lines 6–13 are only
executed if the layer in question is shifted else Line
15 is executed. Lines 6–8 is in direct reference to
Equation 12. Line 9 initializes p1, p2, and p3 to 1 as
described earlier. Lines 11–13 are iterated once for
each dimension, this is a deduction from Figure 14.
Line 15 is from Equation 10. Line 16 decreases the
probability p3 as only objects that are positioned
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1 function approximateSelectivity(D, diagonals)
2 foreach(dia ∈ diagonals)
3 obj←1
4 foreach(d ∈ D)
5 if (d ∈ {n3|n ∈ N}) //d is shifted

6 p′1←1− ϕ
�

dialength−dlength·0
dlength

�

7 p′2←1− ϕ
�

dialength−dlength·1
dlength

�

8 p′3←1− ϕ
�

dialength−dlength·2
dlength

�

9 p1←1, p2←1, p3←1
10 foreach(dimension)
11 p3←p3 · p′3 · p2 · p1+p3 · p′3 · p2 · (1− p1) · p′2

+p3 · p′3 · p2 · (1− p1) · (1− p′2) · (2/3)
+p3 · s′3 · (1− p2) · p′1
+p3 · p′3 · (1− p2) · (1− p1) · (2/3)

12 p2←p2 · p′2 · p1+p2 · p′2 · (1− p1) · p′1
+p2 · p′2 · (1− p1) · (1− p′1) · (1/3)

13 p1←p1 · p′1
14 else //d is not shifted

15 p3←
�
1−

dialength
dlength

�dimensionality

16 p3←p3 ·
dvolume
wvolume

17 dcount←dcount + p3 · obj · diacount

18 obj←obj − obj · p3
19 foreach(d ∈ D)

20 is←is +
dcount

ddimensionality ·
dvolume
wvolume

21 return selectivity

Listing 6: Approximating index selectivity

over the layer can fit this layer. This assumes uni-
formly distributed objects. Another approach is
to make an estimate from the number of objects
estimated to fit on this layer, when not adding ad-
ditional layers, and the actual number of objects
on this layer. This can easily be done without any
overhead as the number of objects per layer is al-
ready known from Section 6.4. Line 17 increases
the number of objects that is estimated to fit on
this layer by the probability of the objects fitting
here (p3) multiplied by the number of objects that
has this diagonal and statistically did not fit a lower
layer (obj · diacount). obj is decreased in Line 18 to
reflect the percentage of the objects that fits this
particular layer. In Lines 19–20 the selectivity is
summed for each layer, and is returned in Line 21.

7 Spatial Queries

This section presents algorithms for the widely used
spatial range and k-NN queries. The algorithms
use the LSS technique presented in the previous
sections. LSS can be implemented on top of an
existing DBMS and therefore the algorithms pre-
sented here builds SQL queries that also can be

executed on existing DBMSs. This makes it pos-
sible to directly compare LSS to existing spatial
indexing techniques. Note that this section focuses
solely on the 2D case. Three or more dimensions
are straightforward.

7.1 Range Queries

Listing 7 shows the algorithm for creating the
WHERE clause for a range query in 2D. The remain-
ing part of the query is straightforward to build.
The function takes as input (Line 1) the coordi-
nates for the lower left corner of the range (qx1 , qy1)
and the upper right corner of the range (qx2 , qy2)
and D which is the set of divisions. Lines 2–14
iterate through all the layers. Lines 3–4 examine
whether the layer is shifted or not. If the layer is
shifted Lines 5–14 iterate through the three sub-
layers. Lines 6–7 create an integer coordinate-set
that represents which cells the corners are in. The
variable s is added in order to move the region ac-
cording to the shifted layer as described in Section
5.3. The dxpos and dypos variables are used when
the self maintenance approach is used. This takes
into account that the layers can be displaced with
respect to each other.

1 function range(qx1 , qy1 , qx2 , qy2 , D)
2 foreach(d ∈ D)
3 if (d ∈ {n3|n ∈ N}) S←[0, 1

3 , 2
3 ]

4 else S←[0]
5 foreach(s ∈ S)

6 q′x1
←b d·qx1−dxpos

dxsize
+ sc, q′y1

←b d·qy1−dypos
dysize

+ sc

7 q′x2
←b d·qx2−dxpos

dxsize
+ sc, q′y2

←b d·qy2−dypos
dysize

+ sc
8 for(qx←q′x1

;qx ≤ q′x2
;qx←qx + 1)

9 for(qy←q′y1
;qy ≤ q′y2

;qy←qy + 1)

10 h←hilbert(qx, qy, d, D, s)
11 if (qx = q′x1

∨ qx = q′x2
∨ qy = q′y1

∨ qy = q′y2
)

12 r←r ∪ {h} //partially included
13 else
14 R←R ∪ {h} //fully included
15 foreach(o ∈ R)
16 wR←wR ∪ {"iv=o"}
17 w′

R←implode(wR," OR ")
18 foreach(o ∈ r)
19 wr←wr ∪ {"iv=o"}
20 w′

r←implode(wr," OR ")
21 t←"(w′

R) OR ((w′
r) AND intersects(region(qx1,qy1,

qx2,qy2)))"
22 return t

Listing 7: Range query algorithm

Lines 8–14 iterate through cells intersected by
the range. For each cell that is iterated by Lines
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8–14, Line 10 calculates the Hilbert space-filling
number. Lines 11–14 examine whether a cell is
completely inside the specified range. If it is, the
space-filling number is added to the set R otherwise
it is added to the set r.

Lines 15–21 create the actual SQL statement
that specifies the range query. Lines 15–20 include
the index values intersected by the range and add
them to wr and wR respectively and OR them to-
gether. This is done by the implode function in
Line 17 and Line 20. The implode function takes
in a set and returns a string with all of the elements
separated by the second argument. Line 21 creates
the WHERE clause that examines whether or not the
objects in the cells from r are actually within the
range. Finally, the SQL statement is returned in
Line 22. In Section 8 tests have been performed
using the BETWEEN predicate when possible. This
approach requires that the sets r and R are sorted.

7.2 k-NN Queries

Listing 8 shows the algorithm for the 2D k-NN
query. Again the focus is on building the WHERE
clause. The function takes as input (Line 1) the
number of desired objects, the coordinate-set of the
point (qx, qy) and D which is the set of divisions.
Line 2 creates a variable l which is an indication
of statistically how large a portion of the world is
needed to get k objects when a uniform distribution
of objects is assumed. |db| is the total number of
objects in the database. The variable a, from Line
3, indicates how many objects that are currently
found, initially it is set to k, because uniform ob-
ject distribution is assumed.

Lines 4–8 are a loop that makes a range query
and keeps expanding it until it contains k objects.
c is a constant used for increasing the probability
of getting a correct result in each iteration. In Line
5 the variable l is increased slightly by using c. A
c value of 1.05, which is an expansion of 5%, is
used as default. Furthermore, l is increased with
the square root of k

a , that is a calculation of how
much the range needs to be increased statistically
to find k objects. In a non-uniformly distributed
world, the algorithm will adjust itself to how much
it should expand in the next iteration, according
to the number of objects currently found. Line 6
counts how many objects there are in the specified
range by using the function in Listing 7. Line 7

1 function k−NN(k, qx, qy, D)

2 l←

r
(wx·wy)· k

|db|
2

3 a←k
4 do

5 l←l · c ·
q

k
a

6 a←count(range(qx − l, qy − l, qx + l, qy + l, D))
7 if (a = 0) a←0.5
8 while(a < k)
9 t←range(qx − l, qy − l, qx + l, qy + l, D)

10 t′←sort(t,distance(qx, qy))
11 o←number(t′, k)
12 l′←distance(o, (qx, qy))
13 if (l′ ≤ l) r←t
14 else r←range(qx − l′, qx − l′, qx + l′, qy + l′)
15 return r + "ORDER BY distance(point(qx,qy)) LIMIT

k"

Listing 8: The algorithm for k-NN queries

examines whether a is zero and in that case it is
set to 0.5 in order to prevent division by zero in
Line 5.

Line 9 executes the range query with the coordi-
nates calculated in Lines 4–8. In Line 10 the result
is sorted according to the distance to the query-
point. Then the kth element is selected in Line 11,
and the distance to this object is calculated in Line
12. In Line 13 it is examined whether the whole
result set is in the already executed range, and if it
is then the old result set is used. Otherwise, a new
range query is executed in Line 14. The result set
may be too large, but it is guaranteed to include
at least the closest k objects. In Line 15 the result
is sorted by distance and only the k closest objects
are selected. As the result is sorted, the algorithm
guarantees, as distinct from the R+-tree, that the
result of a k-NN query always is sorted according
to distance.

8 Performance Study

This section examines how the LSS technique per-
forms when modifying a database. Furthermore,
tests are carried out using the range and k-NN
queries from Section 7.

8.1 Test Setup

The tests are performed on a 3.0 GHz Intel Pen-
tium 4 (HT) processor with 2 GB RAM. The oper-
ating system is Microsoft Windows Server 2003 En-
terprise Edition running the Oracle Database 10.2
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Enterprise Edition DBMS in the default configura-
tion.

The proposed LSS technique is implemented us-
ing the Oracle DBMS and its performance is com-
pared to (a) the Oracle spatial indexing technique
based on R+-trees [12], (b) the canonical Hilbert in-
dexing approach from Section 3.1, where the world
is a single layer divided into cells, and if a region
overlaps cell borders, the region is stored for each
overlapping cell with the respective space-filling
numbers, (c) indexing using the self maintaining
LSS, and (d) the use of no spatial indexes. The
last comparison is used for finding the overhead of
using a given index structure.

In a relational database there are two obvious
ways of implementing the canonical Hilbert ap-
proach. The first solution is to have a single table
containing all data, and if a region overlaps sev-
eral cells it is stored multiple times in the table [1].
The other solution is to have two tables where data
is put in one and the Hilbert index is put in the
other. Tests showed that the first implementation
performs the best with respect to modifications and
is used in the following. For calculating all the
Hilbert space-filling curves the method described
in [9] is used.

In the tests the world is 50, 000 × 50, 000. The
area of the regions has a normal distribution with
a mean µ = 125, 000 and a standard deviation
σ = 20, 000. This means that 1,000 regions to-
gether on average occupy 5% of the world. The dis-
tribution of the regions is uniform and illustrated
in Figure 15(a). This paper has focus on moving
regions so the tests are carried out with only re-
gions in the test data. If a region is zero-sized it is
still considered, and treated, as a region. The data
sets used for testing are generated using the STDW
data generator [6].

All tests are performed five times where the best
and the worst are discarded and the average of the
three remaining is calculated.

8.2 Finding Divisions

In order to use the standard LSS technique a set
of divisions must be selected. First of all the
2n divisions from Section 4.1 are tested using the
divisions [32, 16, 8, 4, 2, 1]; this is division set 1.
These numbers are chosen as the divisions are dou-
bled on each layer. Division set 2 is the divi-

sions [31, 17, 8, 5, 3, 1], which are all relative primes.
These numbers are chosen as the divisions are close
to division set 1.

Division set 3 is the divisions [503, 413, 1]. These
numbers are chosen based on Equation 8, which
is calculated on the smallest 50% of the regions
and the smallest 96%. The numbers are slightly
adjusted to ensure they are relatively primes. This
is illustrated in Figure 15(b). The x-axis represents
the size of the regions and the y-axis represents the
probability. The reason for choosing 50% is that
it is here there are most regions of the same size.
The reason for choosing 96% is that it is a layer
that should be able to contain almost all regions.

(a) 1,000 objects
plotted

0
5000000

10000000
15000000
20000000
25000000

0 40 80 120 160 200 240(1,000)

Layer 0

Layer 1

size

(b) Choosing divisions for
Division set 3

Figure 15: Illustration of the test data

When comparing to the canonical Hilbert space-
filling curve 8 divisions are used; this is division set
4. The division is chosen as tests has shown that
a higher number of division is more time consum-
ing when modifying. This comes at the expense of
slower queries, but the main focus of this paper is
on modifications.

The first test is to find the distribution of re-
gions over the layers for the four division sets with
multiple layers. The test is conducted with 50,000
regions in the database. Division set 1 has the
distribution [61%, 19%, 10%, 6%, 3%, 1%], i.e., 61%
of the regions are on Layer 0 (the bottom layer),
19% on Layer 1 and so on. Note that 1% of the re-
gions are on the single-celled top layer. Division set
2 has the distribution [62%, 30%, 7%, 0%, 0%, 0%].
Note that the top three layers contain very few re-
gions (due to rounding the numbers do not sum up
to 100). This shows that using relative primes for
divisions can decrease the number of layers. Divi-
sion set 3 has the distribution [96%, 4%, 0%]. Even
though there are no regions on the top layer, it is
not guaranteed that this cannot occur.

Figure 16 shows the dead space and index selec-
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Division set Dead space Selectivity
1: [32, 16, 8, 4, 2, 1] 96.6% 2.780%
2: [31, 17, 8, 5, 3, 1] 96.5% 0.292%
3: [503, 413, 1] 87.6% 0.038%
4: [8] (canonical) 99.7% 1.722%

Figure 16: Dead space and index selectivity

tivity as described in Section 3.1. The figure shows
clearly that division set 3 has the best dead space
and index selectivity. Division set 3 has 87.6%
dead space, which is less than the upper bound de-
scribed in Section 5.3. This is because the regions
can fill the whole cell as the divisions are not calcu-
lated based on the maximum size. Division set 3 is
used in the following for comparison and is called
LSS and the Hilbert space-filling curve is used.

8.3 Modification

The following tests will show how inserts, updates,
deletes, and a mix of the three perform.

8.3.1 Insert

The insert test is conducted on an empty database.
The data set consists of 150,000 regions, which are
all inserted one per transaction. Every 5,000 inserts
are timed.
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Figure 17: Insert

Figure 17 shows that the Oracle R+-tree is ap-
proximately 2579% slower than LSS on average.
In Figure 17(b), it shows that no spatial index
and both LSS and self maintaining LSS are about
the same. Canonical Hilbert is about 8% slower
than LSS, as it occasionally saves a region multiple

times. Note that in Figure 17(a) some measure-
ments are about the same and thereby placed on
top of each other, these are magnified in Figure
17(b).

8.3.2 Update

The update test is conducted on an empty
database. 5,000 inserts are conducted and then
5,000 updates are performed and this is repeated.
The testing is done by timing the 5,000 updates and
calculating the average. The update test is done up
till 150,000 regions.
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Figure 18: Update

Figure 18 shows that the Oracle R+-tree is
2472% slower than LSS for updates. The canon-
ical Hilbert (division set 4) is 62% slower than LSS
as a delete must be conducted followed by a number
of inserts to do the update. LSS and self maintain-
ing LSS is about the same as with no spatial index.
Note that in Figure 18(a) some measurements are
about the same and thereby placed on top of each
other, these are magnified in Figure 18(b).

8.3.3 Delete

The delete test is conducted on a database with
150,000 preloaded regions. Every region is deleted,
one per transaction, 5,000 deletes are timed and the
average is calculated. The x-axis shows how many
regions there are in the database when the delete
is conducted.

Figure 19 shows that the Oracle R+-tree is ap-
proximately 906% slower than LSS for deletion.
There is no significant difference between LSS, self
maintaining LSS, canonical Hilbert, and no spatial
index; these are only separated by 4%. Note that
in Figure 19(a) some measurements are about the
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Figure 19: Delete

same and thereby placed on top of each other, these
are magnified in Figure 19(b).

8.3.4 Mixed Modification

In order to test how the different indexes perform
when heavily modifying the data, a mixed workload
is created with 10% inserts, 80% updates, and 10%
deletes. 160,000 modifications, each in a separate
transaction, are executed on a database preloaded
with 150,000 regions.
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Figure 20: 10% Insert, 80% update, 10% delete

Figure 20 shows that the best performance is
achieved with no spatial index, because it does not
need to maintain an additional index. However,
LSS is only 2% slower than no spatial index. The
self maintaining LSS is 10% slower than LSS. The
canonical Hilbert is 61% slower than LSS. This is
due to the high number of updates where the canon-
ical Hilbert is slower. The Oracle R+-tree is 3542%
slower than LSS.

8.4 Self Maintenance

This test is performed in order to examine how well
a self maintaining LSS is to approximate selectivity.

Figure 21 shows the approximated and the actually
index selectivity from 100,000 modifications. The
data set looks as follows. First 10,000 objects are
inserted. Next 90,000 updates are performed on
these objects. The objects are inserted with an
average area of 125,000. Once an object has been
updated five times it has an average area of 360,000.
The objects maintain approximately this area for
any further updates.
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Figure 21: Index selectivity

The test shows that the measured index selec-
tivity comes very close to the approximated index
selectivity, which indicates that the approximation
method is very accurate. It ends up with an ap-
proximated index selectivity of 0.108934484 and a
measured index selectivity of 0.120303732.

8.5 Querying

The LSS indexing technique described in this paper
is designed to speed up modifications at the expense
of slower spatial queries. This section examines the
slowdown on range and k-NN queries on a database
preloaded with 150,000 regions.

8.5.1 Range Query

The performance of range queries is found by exe-
cuting 100 range queries at random positions and
calculating the average response time. The percent-
age of the world selected by the range is varied, and
is shown on the x-axis in Figure 22.

Figure 22 shows that LSS is up to 1100% slower
than the Oracle R+-tree. The self maintaining LSS
is only 948% slower than the Oracle R+-tree. This
is because that the self maintaining LSS only has
added one layer (division 473), which yields shorter
queries and therefore returns the result faster than
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Figure 22: Range queries

LSS, even though the self maintaining LSS has
worse index selectivity than LSS. The canonical
Hilbert performs worse than LSS because the table
used for canonical Hilbert contains duplicates that
must be filtered out (using DISTINCT). The canoni-
cal Hilbert also has worse selectivity, see Figure 16.
Tests have also been performed on tables with no
spatial index. These tests are not shown in Fig-
ure 22 as a query always takes approximately 30
seconds (a full table scan).

8.5.2 k-NN Query

For testing k-NN queries, 100 random query points
are selected. These will be used for all the
tests. The number of regions to be returned (k)
is changed, to see how it scales. k is shown on the
x-axis in Figure 23.
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Figure 23: k-NN queries

Figure 23 shows that LSS is 126% slower than
the Oracle R+-tree. This is because that it is only
very small range queries that the k-NN uses. The
canonical Hilbert is very slow, which is the result of
poor selectivity, i.e., here few regions are returned
(k is low) and there are many more regions index
by a single cell for the canonical Hilbert. Self main-
taining LSS is 16% slower than LSS, this is because
of worse selectivity, as with the canonical Hilbert,

only a very few objects must be returned. Again
results for no spatial index are omitted as it always
results in a full table scan.

8.6 Summary

The self maintaining LSS indexing technique is
overall faster than using an R+-tree if the modi-
fication/spatial query ratio is 7 or above (7 modifi-
cations for each query) if the modifications consists
of 10% inserts, 80% updates, and 10% deletes and
the spatial range or k-NN queries select 2% of the
world or less.

9 Conclusion

This paper proposed a new indexing technique,
LSS, based on layered Hilbert space-filling curves
for indexing 2D moving regions. Going from 2D
to 3D has been shown to be straightforward. The
notion of shifted layers was introduced to reduce
the number of layers. A self maintenance model
was introduced in order to be able to index data
without prior knowledge of size and distribution.
The LSS indexing technique has been implemented
using the Oracle DBMS.

Tests showed that shifted layers are very efficient
for achieving better selectivity and reducing dead
space. The performance study showed that the
overhead for maintaining the proposed index tech-
nique is significantly lower than the R+-tree and
the canonical way of using the Hilbert space-filling
curve. The tests also showed that there is no sig-
nificant cost overhead when using the self mainte-
nance model. The speedup comes at the expense of
slower k-NN and range queries. However, when in-
dexing moving regions the number of modifications
is often orders of magnitude larger than the num-
ber of queries. It is estimated that there should
be 7 modifications for each spatial query for the
proposed index technique to be overall faster than
using R+-trees.

Future includes implementing the LSS technique
in Oracle using Oracle Extensible Indexing.
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Abstract

When developing new indexing techniques, their performance must be examined. Synthetic data
is often preferred as it is easy to control the conditions. This paper proposes both a data and
workload generator for generating n-dimensional data. The data generator operates with worlds
and blocked spaces which enables the user to setup a realistic scenario for the objects to move
within. The data generator operates with different statistical distributions which makes it possible
to control, e.g., the placement, destination, and size according to the distributions. When testing
an index it is often desired to test a mix of modifications and queries. Therefore, this paper
also provides a workload generator which produces a mix of inserts, updates, deletes, and spatial
queries. The workload generator enables use of spatial and temporal noise which makes the output
more realistic. Furthermore, the workload generator is able to produce workloads from external
data generators. A performance study shows that STDW is able to produce 27,000 object snapshots
per second on a standard PC.

1 Introduction

As new technologies arise for obtaining the geo-
graphical positions of moving objects, the need for
handling this type of data grows. This means that
efficient index structures for handling moving ob-
jects are needed.

There are different kinds of moving objects which
are typically referred to as moving points and mov-
ing objects with spatial extension. An example of
a moving point could be a car driving on the high-
way. Other moving objects, such as clouds, could
be modeled as having spatial extension in two or
three dimensions.

When new data structures are introduced, it is
necessary to investigate the performance of these.
Therefore, tests must be performed on data that re-
sembles the conditions for which the data structure
is designed. These tests can be done using either

real or synthetic data sets.
Real data sets are often not accessible. Further-

more, when using real data sets, it is very diffi-
cult to control single variables like size and velocity,
which is often desired. Using synthetic data sets it
is easy to control single variables and to generate
large amounts of data in order to simulate a specific
situation.

When testing an index it is often desired to test a
mix of different operations, that is inserts, updates,
deletes, and queries. This is often not part of a data
generator [7, 10, 11]. The mix of modifications can
be generated using a workload generator. This pa-
per presents a data and workload generator called
STDW. The data generator is able to produce pure
data, which consist of exactly one modification on
each object in each snapshot. The workload gener-
ator is able to produce a mix of modifications and
relevant spatial queries. Temporal and spatial noise
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can be added to modifications by the workload gen-
erator. The reason why STDW is split into two
different generators is that sometimes pure data is
preferred; then only the data generator is used. The
workload generator is able to operate with external
data sources and therefore, this can be used with
different data generators.

The focus of this paper is to develop a fast data
and workload generator that can operate with n-
dimensional (nD) data. Furthermore, different pa-
rameters are presented in order to ensure complex
simulations.

This paper is structured as follows. Section 2
presents related work within the area of data and
workload generation. Section 3 introduces the de-
sign criteria and the architecture. The data gener-
ator is presented in Section 4. Section 5 presents
the workload generator. Visualization of the gen-
erated data is presented in Section 6. Section 7
shows the performance studies, and finally Section
8 concludes the paper.

2 Related Work

This section presents related work on non-network
data generators [4], i.e., in network data generators
objects move along paths [2], e.g., cars driving on
roads.

In accordance to [4] the main contribution to the
area of non-network data generators is made by
GSTD [10], G-TERD [11], and Oporto [7]. These
papers present different methods for generating
spatio-temporal data sets. Common to these gen-
erators is that they all produce 2D data.

GSTD and G-TERD are the ones most similar
to STDW. They all use a collection of different sta-
tistical distributions to simulate different scenarios.
The third generator, Oporto, differs from STDW,
GSTD, and G-TERD by mainly using an attrac-
tion and repulsion model. GSTD and G-TERD
share most characteristics with STDW, but STDW
differs overall from the three mentioned generators
by the generation of nD data and workloads with
relevant spatial queries.

GSTD supports generation of both points and
minimum bounding rectangles (MBR). Points are
supported as MBR with no spatial extension. Ob-
jects do not interact with each other and are al-
lowed to leave the world. The generated objects

have the following properties. Duration, shift,
and resizing. Duration controls how often an
object is updated. Shift controls object velocity.
Resizing controls the object size. These proper-
ties can be used in conjunction with the three sta-
tistical distributions. Uniform, Gaussian, and Zipf
(skewed).

GSTD supports three different techniques for
handling objects about to leave the world. Radar,
adjustment, and toroid. Radar means that objects
leaving the world are still monitored, since they
could reenter. Adjustment, if an object tries to
leave the world; it is repositioned inside the world.
Toroid, the world is seen as a ball, leaving the world
in one side means reappearing on the other side.
Like GSTD, STDW supports an adjustment ap-
proach for dealing with objects leaving the world.
Unlike GSTD, STDW has the notion of restricted
areas, where no objects are allowed inside. STDW
produces all objects in parallel to ensure they are
ordered by time. GSTD, on the other hand, gener-
ates the objects in serial to save memory.

[8] proposes an extension to GSTD that applies
infrastructure. The infrastructure is supported by
randomly positioned and sized rectangles which re-
strict object movement. Like [8], STDW also have
a notion of blocked spaces. Unlike [8] the object re-
strictions in STDW are user controlled and allows
both encapsulation and restriction of objects.

G-TERD and GSTD uses a collection of user in-
puts and a number of statistical distributions to
simulate different scenarios. Objects in G-TERD
are a collection of sub-objects which may or may
not be connected. These sub-objects are allowed
to change their properties like speed and position,
over time, independent of one another. The size of
an object is the MBR of its sub-objects. G-TERD
supports interaction between objects. Objects do
not bounce on one another. However, an object can
be configured to avoid overlapping other objects.

The world size in G-TERD is not limited to the
monitored area. G-TERD uses a scene-observer,
which means that an object can be followed as from
an airplane. Only the part of the world at any time
covered by the observer is presented in the output.

Like G-TERD, STDW uses statistical distribu-
tions and user input to simulate scenarios. Where
G-TERD produces a sequence of raster images as
output, STDW can produce both text output as
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well as visualize 2D and 3D in external tools in or-
der to verify the data. STDW generates nD MBRs.
With STDW it is possible to make complex sim-
ulations by using restricted areas and nesting of
worlds.

In general Oporto differs from STDW, GSTD
and G-TERD by being based on attraction and re-
pulsion. It simulates both moving points and mov-
ing objects with spatial extension. It simulates a
fishing scenario.

Fishing ships head for a shoal and after some
time it heads towards a harbor. Plankton act as
good spots for shoals. Shoals act as good spots
which attract the fishing ships. Fishing ships are
repelled by storms. The Oporto generator is writ-
ten in 16 bit. This has the consequence that the
number of objects with different ids is limited to
216. STDW does not have this limitation. Fur-
thermore, Oporto only supports 2D objects, where
STDW is able to produce nD data.

3 Design

This section presents the design criteria and archi-
tecture for both the data and workload generator.

3.1 Design Criteria

The overall criteria for the data and workload gen-
erator are the following.

• The generator should be able to produce data
in one to n dimensions

• Data and workload generation should be fast

• The output should be in an easily parsed text
format

The data generator outputs pure data which con-
sists of s snapshots each containing the position and
size of all o objects. A snapshot contains all object
position and sizes at a specific time. o is the to-
tal number of objects in the data load. The data
is pure, because is contains the exact position and
size for each object in every snapshot. The data
generator is able to do the following.

• Simulate different scenarios using different sta-
tistical distributions

• Setup different areas in which objects can or
cannot move

The workload generator produces a workload
which is a number of start inserts followed by a
number of loads and finally followed by a number
of end queries. A load is a collection of i inserts, u
updates, d deletes, k k-NN queries [6], and r range
queries [5]. Note that some of these values can be
zero, for example a load could consist of only in-
serts. The workload generator is able to produce
the following.

• A mix of modifications and queries

• Expected results for spatial queries

• Object positions with spatial noise

• Temporal noise

3.2 Architecture

The data and workload generators consist of differ-
ent elements which are depicted in Figure 1. The
solid lines illustrate data flow. The boxes illustrat-
ing output are emphasized, that is pure data and
workload.

The data generator can be controlled by the
workload generator. When using the workload gen-
erator, it is also possible to use an external data
generator. Control is illustrated by the dashed
lines.

Data generator Workload generator

External 
data generator

WorkloadPure data

Figure 1: STDW architecture

The workload generator controls the data gen-
erator. This way, only the movements of the ob-
jects needed for the workload are generated. The
workload generator is also able to process data
from external data generators. In order to make
this work, the external data generator must im-
plement the STDW-workload interface. This in-
terface requires the methods getNewObject() and
getNextShapshot(objectId).
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4 Data Generation

This section describes how the data generator pro-
duces the spatio-temporal data. The data gen-
erator operates with three kinds of nD entities.
Cuboids, worlds, and blocked spaces.

4.1 Cuboids

Moving objects are called cuboids. Each cuboid
has a set of properties which can be manipulated
throughout the cuboid’s lifetime. The position of
a cuboid is its center. The cuboid can change size
according to its growth rate. Collision detection
between cuboids would compromise the design cri-
teria of high performance.

To make a cuboid able to move, it is given a des-
tination, a velocity, and a heading. The cuboid will
try to reach its destination. When a cuboid reaches
its destination it is simply given a new one. The
velocity is the speed which the cuboid is currently
traveling. Finally, the heading is the direction in
which the cuboid is currently traveling.

In Figure 2, a cuboid, c, reaches its destination,
da. After it has reached da, it is assigned a new des-
tination, db. In the figure, the heading of a cuboid
is shown as a black arrow. The grey line illustrates
the path on which the cuboid travels. In order to
make a realistic movement pattern, it is possible
for a cuboid to have a heading that does not point
directly towards its destination. In Figure 2(a) the
cuboid always travels directly towards its destina-
tion. In Figure 2(b) the cuboid has a heading which
does not at all times point directly towards its des-
tination. This allows the cuboid to travel off the
linear course towards its destination.

c

dadb

(a) Straight line movement

c

dadb

(b) Cuboid with heading

Figure 2: Movement towards new destination

Formally, the heading is defined in Equation 1,
where ~̂a is the unit vector of ~a, calculated ~a

|~a| .

−−−−−→
heading is the new heading where

−−−−−−→
heading′ is the

current. Pos′ is the coordinate of the current posi-
tion, and Dest is the coordinate of the destination.
tr ∈ [0; 1] is the turn rate. A larger value results in
a tighter turn, i.e., if tr = 1 it would result in the
movement from Figure 2(a).

−−−−−→
heading =

ˆ−−−−−−→
Pos′Dest · tr +

ˆ−−−−−−→
heading′ · (1− tr) (1)

The new position, Pos, is given by Equation 2,
where Pos′ is the current position, −−−−−→heading is given
from Equation 1, and velocity is the velocity of the
cuboid.

Pos = Pos′ + ˆ−−−−−→
heading · velocity (2)

The start size, start position, target size, and
destination are modeled as mathematical distribu-
tions. The following distributions are supported.
Uniform, Zipf [13], and Gaussian [1]. These are
shown as 2D data in Figure 3. Figures 3(a), 3(b),
and 3(c) each show single snapshots of cuboid posi-
tions. Figures 4 shows a series of snapshots where
cuboids are born uniformly spread all over the
world and moving towards the upper left corner.
This is accomplished by using a uniform distri-
bution for assigning start positions, and a Gaus-
sian distribution for assigning destinations to the
cuboids.

(a) Uniform (b) Gaussian (c) Zipf

Figure 3: Distribution of cuboids

Figure 4: Using two distributions
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4.2 Worlds and Blocked Spaces

Cuboids are born in stationary worlds, in which
their movement is restricted. This means that a
cuboid cannot leave one world, unless it enters an-
other. Blocked spaces are stationary and placed in
worlds. Cuboids cannot enter blocked spaces, and
if a cuboid hits a blocked space, it bounces.

Worlds and blocked spaces have similar behavior.
(a) They are both stationary. (b) They restrict ob-
ject movement. (c) They are positioned and given
size as per cent of the universe size. The universe is
the entire area in which worlds and blocked spaces
can be positioned.

If a cuboid is given a destination outside its
world, this must be handled. This is illustrated
in Figure 5(a) where the cuboid, c, has the desti-
nation da. The cuboid travels towards this desti-
nation, but cannot reach it because it positioned
outside the world. At some point the cuboid hits
the side of the world and bounces back. This is real-
ized by (a) mirroring the destination on the side of
the world, and (b) setting the cuboid’s heading to
point directly towards the destination. The cuboid
then travels towards db.

c

da

db

(a) Bounce on world-side

c

da

db

(b) Bounce on blocked space

Figure 5: Cuboid bouncing

Worlds can contain blocked spaces. In Figure
5(b) a blocked space is shown as a black rectangle.
The cuboid has a destination, da, which makes the
cuboid’s path cross the blocked space. As when
a cuboid hits the side of the world, the cuboid
bounces of the side of the blocked space. Again the
destination is mirrored on the side of the blocked
space, making the cuboid travel towards db.

The motion of cuboids is restricted in two ways.
Either when hitting world sides or blocked spaces.
As shown in Figure 5(b) worlds and blocked spaces
can be used together. It is possible to make sce-

narios where cuboids move between large worlds
connected by narrow worlds. In Figure 6(a) the
cuboid movement is restricted by the five worlds.
In Figure 6(b) movement is restricted by blocked
areas. In both scenarios the same space for cuboid
movement is present.

w

w

w

w

w

(a) Restriction using
worlds

(b) Restriction using
blocked spaces

Figure 6: Cuboid movement restriction

Figure 7(a) shows a cuboid, c, born in w1 and
having a destination, da, in w3. On its path it
first leaves the world w1. As c is allowed to change
worlds, it does not bounce on the side of w1.

c

w

w

w

w

w

da

(a) Cuboid changing
worlds

(b) Four worlds

Figure 7: Cuboid movement restriction

Worlds can be used to make complex simula-
tions. Figure 7(b) shows a scenario containing four
worlds. Each world contains the same amount of
cuboids. This simulates a map with three cities.
The cities have a higher density of cuboids than
the area surrounding them.

4.3 Parameters

In this section the parameters for the data gener-
ation algorithm are presented. The parameters for
the algorithm are divided into four groups. Data
size, environment, initialization of the cuboids, and
movement of cuboids.
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4.3.1 Data Size

These parameters control the amount of data pro-
duced by the generator. Two parameters control
the data size.

Number of cuboids The number of cuboids gen-
erated by the data generator

Number of snapshot per cuboid The number
of occurrences of a given cuboid in the data
set

4.3.2 Environment

These parameters specify the information about
the environment in which the cuboids move. The
environment is controlled by the following parame-
ters.

Number of dimensions This specifies the di-
mensionality of the data set. All cuboids in
the generated data set is of this dimensional-
ity

Universe size The size of the entire area in which
worlds and blocked spaces can be positioned

Worlds A set of worlds including their sizes and
positions

Blocked spaces A set of blocked spaces including
their sizes and positions

4.3.3 Initialization of Cuboids

Each world holds statistical distributions that con-
trol the initialization of the cuboids within the
world. The two distributions for initialization are
the following.

Start position Controls where in the world the
cuboids are born according to the given distri-
bution

Start size Controls the initial size of the cuboids
according to the given distribution

4.3.4 Movement of Cuboids

As with initialization of cuboids, the movement of
cuboids is controlled by two different distributions
for each world. The two distributions are the fol-
lowing.

Destination Controls where cuboids select their
destinations according to the given distribu-
tion

Target size Controls the size that the cuboids re-
size towards according to the given distribu-
tion

4.4 The Algorithm

The data generation algorithm is divided into two
phases; initialization and movement. In the initial-
ization phase cuboids are assigned properties, e.g.,
size, position, and destination. In the movement
phase cuboids change position, size etc. Different
distributions can be used for each of the phases for
destination and target size.

1 procedure initialize(conf)
2 worlds ←createWorlds(conf)
3 blockedspaces ←createBlockedSpaces(conf)
4 foreach(w ∈ worlds)
5 foreach(obj ∈ w)
6 objsize←startSize(w)
7 objtargetSize←newTargetSize(w)
8 objpostion←startPostion(w)
9 objdestination←newDestination(w)

10 objheading← startHeading(obj)
11 objvelocity←startVelocity(obj)

Listing 1: Initialization

Listing 1 shows the algorithm for initialization.
In Lines 2–3 worlds and blocked spaces are created.
Lines 4–11 iterate over all the worlds. Lines 5–11
iterate over all the cuboids in every world. In Lines
6–11 cuboids are assigned their properties.

In the movement phase the following is done in
each snapshot. First, a new size, velocity, position,
destination, and heading are given to a cuboid. A
cuboid may get the same destination in more than
one snapshot because a new destination is only cho-
sen when the distance to its current destination is
less than a certain threshold. Then three things are
examined. Should the cuboid bounce on a blocked
space? Should the cuboid change world? Or should
it bounce on a world side?

Lines 2–24 in Listing 2 run the algorithm
snapshots times. Lines 3–24 iterate over all the
worlds. Lines 4–24 iterate over the cuboids in each
world. Lines 5–6 update cuboids with new sizes and
positions. Lines 7–12 check whether the distance
to the destination has not gotten smaller within a
given number of snapshots. A new destination is
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1 procedure moveCuboid(worlds,blockedspaces,
snapshots)

2 foreach(snapshots)
3 foreach(w ∈ worlds)
4 foreach(obj ∈ w)
5 objsize ←newSize(obj, w)
6 objposition ←newPosition(obj, w)
7 if (objdisT oDest ≈ objlastDisT oDest)
8 objnotCloser←objnotCloser + 1
9 else objnotCloser←0

10 if (objnotCloser = closerThreshold ∨
objdisT oDest ≈ 0)

11 objdestination←newDestination(w)
12 objnotCloser←0
13 objheading← newHeading(obj, w)
14 objvelocity ←newVelocity(obj)
15 foreach(b ∈ blockedspaces)
16 while (intersects(obj,b))
17 bounceOnBlockedSpace(obj,b)
18 if (wmayLeave)
19 foreach(w′ ∈ worlds\{w})
20 if (w′

mayEnter ∧ canPass(obj,w,w′))

21 w←w\{obj}, w′←w′ ∪ {obj} //change
world

22 w←w′, changedWorld←true
23 if (¬changedWorld ∧ outside(obj,w))
24 bounceInWorld(obj, w)

Listing 2: Movement phase

also given to the cuboid, if it has reached its cur-
rent destination in Line 10–11. Lines 13–14 update
the heading and velocity of the cuboid. Lines 15–17
iterate over blockedspaces. Lines 16–17 check if the
cuboid has to bounce on a blocked space. Line 18
examines if the cuboid is allowed to leave its world.
If it is then Lines 19–22 iterate over worlds to check
if a cuboid has to change its world. Line 20 checks
if a potential new world, w′, has been configured to
accept new cuboids. If this is the case and if the
cuboid intersects this world and can fit, then it is
moved from w to w′. Lines 21–22 move the cuboid
to its new world. Lines 23–24 check if the cuboid
has not left its world and if it has it must bounce
on the world.

4.5 Output

The output from the data generator can be written
to a file. A fragment of an output file from the
data generator is shown in Figure 8, showing two
cuboids in two snapshots in 2D. The first column
is the cuboid’s id. The second column is the time
stamp. The last two columns are the lower left,
lc, and upper right, uc, corner of the cuboid. This
output corresponds to the definition of a spatial
object in [9].

id time lc uc
1 1 11,40 14,42
2 1 3,19 11,33
1 2 12,42 15,43
2 2 3,20 11,34
. . .

Figure 8: Data fragment

5 Workload Generation

When testing the performance of an index struc-
ture it is necessary to control the ratio of the dif-
ferent modifications and queries in order to fully
understand the results of the tests. The workload
generator is able to output a number of inserts, fol-
lowed by a number of loads composed of a mix of
inserts, updates, deletes, k-NN queries, and range
queries. Last a number of k-NN queries and range
queries can be put in the workload.

When dealing with GPS-data the positions are
not always accurate [3]. In order to make the syn-
thetic data more realistic, the workload generator
can add noise to size, position, and time stamps of
objects.

5.1 Parameters

In the following the parameters for the workload
generator are presented. These parameters are split
into three groups. Data size, spatial queries, and
spatial and temporal noise.

The workload generator is able to produce two
kinds of output.

• A workload that consist of n loads

• At least n operations per object on a collection
of o objects

Therefore, the workload generator uses two dif-
ferent algorithms as shown in Appendix A. The
two algorithms use the same parameters except the
ones that control the data size; that is number of
loads, number of objects, and operations per object.

5.1.1 Data Size

The following parameters control the amount of
data produced by the workloads algorithms.
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Number of loads The number of loads that will
be generated by the workload generator. This
parameter is only used by the number-of-
modifications algorithm shown in Listing 4 in
Appendix A

Number of objects The number of objects gen-
erated by the workload generator. This
parameter is only used by the number-of-
modifications algorithm shown in Listing 5 in
Appendix A

Operations per object The number of opera-
tions generated by the workload generator.
The parameter is used only by the number-
of-loads algorithm shown in Listing 5 in Ap-
pendix A

Number of start inserts The number of start
inserts added to the workload before any loads.
Note this number can be zero

Inserts, updates, deletes The number of in-
serts, updates, and deletes in a load. Note
these numbers can be zero

When configuring the workload generator the ra-
tio of start inserts (is), inserts (i), and deletes (d)
in a load must be considered. Otherwise, a situ-
ation having more deletes than inserts could oc-
cur. Equation 3 describes the ratio that must be
respected in order to guarantee a successful gener-
ation in which l is the number of loads.

is + i · l ≥ d · l (3)

The number of objects parameter in the number-
of-loads algorithm is derived from is + i · l.

5.1.2 Spatial Queries

The following parameters control the spatial
queries in the workload.

k-NN and range queries The number of k-NN
and range queries in a load

k-NN and range size Controls the size of k-NN
and range queries

End queries The number of k-NN and range
queries to be placed last in the workload.

5.1.3 Spatial and Temporal Noise

The following parameters control how spatial and
temporal noise is added to the objects. Spatial
noise is a distribution that controls how a con-
trolled inaccuracy is added in a given radius of an
object. Temporal noise controls both the length
of the loads and the distribution for selecting time
stamps in the timeslots, which are elaborated on
in Section 5.4. The parameters for noise are listed
below.

Spatial noise A distribution that controls the
amount of noise added to objects

Temporal length of loads A distribution con-
trolling the temporal length of loads

Placement in timeslot This is a distribution
that controls where in a timeslot the object
is placed

5.2 Algorithm

This section describes the core algorithms in the
workload generator. As mentioned in Section 5.1
there are two algorithms.

5.2.1 Number-of-Loads Algorithm

The algorithm for generating n loads can be seen in
Listing 4 in Appendix A.1. This algorithm outputs
a file with confstartInserts inserts. This is followed
by confloads loads each consisting of confinserts in-
serts, confupdates updates, and confdeletes deletes.
The load also contains confknn k-NN queries and
confrange range queries. Finally, confendRange

range queries and confendKnn k-NN queries are
output.

The workload generator fetches a new object
from the data generator when an insert is made.
The object is put in the set of currently inserted
objects named objects. When an object is to be
updated, the workload generator randomly selects
an object from objects, and asks the data generator
for the next snapshot for this object.

Deletes are conducted by randomly selecting an
object from objects and removing it.
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5.2.2 Number-of-Modifications Algorithm

The algorithm for generating a workload with at
least n modifications per object on a collection of o
objects can be seen in Listing 5 in Appendix A.2.

It outputs a file containing confstartInserts fol-
lowed by a number of loads which are followed by
a number of end queries. This algorithm guaran-
tees a workload containing confobjectCount objects
each having at least confminModifications modifi-
cations. An object can be inserted, a number of
updates conducted on it, deleted, and then in-
serted again. Because modifications are carried out
on randomly chosen objects, a maximum number
of modifications per object cannot be guaranteed,
but the algorithm aims towards having at most
confminModifications + 1 modifications on each ob-
ject.

delete

objmodifications  <confminModifications

objmodifications  <confminModifications

objmodifications  =confminModifications

objmodifications++

update

insert

delete

objmodifications++

objmodifications  =confminModifications

o b j m
o d i
f i c
a t i o

n s   
=
c o n

f m i n
M o

d i f
i c a
t i o n

s

objmodifications++insert

insert

update

update

delete
objectsliving 

objectsliving 
objectscomplete

objectscompleteobjectsdead

objmodifications  <confminModifications

Figure 9: State diagram for an object

The algorithm utilizes three sets of objects.
objectsliving, objectsdead, and objectscomplete.
objectsliving contains the currently inserted ob-
jects. objectsdead contains objects that are
not currently inserted, but still has not reached
confminModifications. Objects having reached
confminModifications are put in objectscomplete.
These objects are however not excluded from also
being in objectsliving. Generally objectscomplete is
used to prevent deadlock situations. This could oc-
cur if there are no objects in objectsdead, and the
workload generator was to issue an insert. Then no
object could be chosen for this modification. This
is avoided by choosing an object only residing in

objectscomplete. A state diagram for an object can
be seen in Figure 9. It illustrates how an object
can move between the three sets.

When the workload generator is to output an
insert it chooses an object from objectsdead. If
this is not possible it chooses an object from
objectscomplete which is not currently inserted, al-
though it has reached confminModifications mod-
ifications. If possible an update is conducted
on an object from objectsliving which is not in
objectscomplete. Otherwise, an object that occurs
in both sets is chosen. When a delete is to be made,
an object is chosen from objectsliving which is also
in objectscomplete if possible. This means that an
object which has reached confminModifications is
deleted. If no objects occur in both objectsliving

and objectscomplete, an object is chosen from
objectsliving. When deleted, the object is removed
from objectsliving. Furthermore, if the object is not
in objectscomplete it is added to objectsdead.

5.3 Spatial Noise

Spatial noise means that the coordinates of an ob-
ject are distorted. This is often useful when sim-
ulating GPS data, as there are inaccuracy in the
measurements.

lct

lct+1

lct+1

uct

uct+1
uct+1

uct

lct́

´

´

´

Figure 10: Adding spatial noise

In Figure 10, the original coordinate pair (lct,uct)
is moved to (lc′t,uc′t). This is done for the lower left
corner and upper right corner of the MBR of the
object in the 2D example. The emphasized box in
the figure indicates the new size and shape of the
object. The new position for the corner is selected
inside a circle with regard to the given distribution
(uniform, Gaussian, or Zipf). The default distribu-
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tion is Gaussian in the center of the circle as this
according to [3] as this approximates GPS-noise
well. The size of the circle symbolizes the maxi-
mum amount of noise added to a coordinate. Ob-
ject noise is calculated for each modification, and
does not affect other modifications for the same ob-
ject.

5.4 Temporal Noise

When looking at the output from the data gener-
ator in Section 4.5, each object at the same snap-
shot has the same time stamp. This is however not
very realistic. An example could be a taxi com-
pany having all their taxis send their position every
ten seconds. It would be unrealistic that all posi-
tions would arrive at the same time at the server.
Therefore, it is necessary to model that time be-
tween modifications varies. A load is divided into
a number of timeslots. A timeslot is the time in
which a given operation must occur.

6

i u u u d

54321
5,54,53,52,51,5Temporal data

(a) Operations placed naively
in their timeslots

654321

i
1,2

u
2,1

u
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u
4,4

d
5,8With noise

(b) Operations placed uni-
formly in their timeslots

Figure 11: Adding temporal noise

Figure 11(a) shows how a load is split into times-
lots and operations are placed regularly in the mid-
dle of the given timeslots. Figure 11(b) shows how
operations are uniformly placed in their timeslots
and that time between operations varies. To simu-
late periods with varying activity, it is possible to
vary the temporal length of a load. This is shown
in Figure 12.

1 function timeStamp(operations,temporalLength)

2 time← temporalLength
operations

3 times←∅
4 for(i←0 to operations− 1)
5 r←distributeTime(i · time , (i + 1) · time)
6 times←times ∪ {r}
7 return times

Listing 3: Algorithm for temporal noise

Listing 3 shows the algorithm for calculating time
stamps for operations in a load. Line 1 takes in the
number of operations and the time the load spans.
Line 2 calculates the length of a timeslot and as-
signs it to time. Lines 4–6 iterate operations times.

Line 5 generates a time stamp for the current times-
lot according to the chosen distribution. In Line 6
the time stamp is saved in the set times. Line 7
returns the time stamps for the load.
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Figure 12: Different length of loads

5.5 Query and Result Generation

This section describes how relevant spatial queries
and their result sets are produced. The focus will
be on positioning the two important spatial queries
range and k-NN. Instead of positioning the queries
randomly in space, the main part of the queries
should be placed where objects are present. The
spatial queries and their result sets will be embed-
ded in the workload file. This is done to ensure that
the result set of a query corresponds to the objects
contained in the database at the given time.

When generating workloads the STDW data gen-
erator is controlled by the workload generator. The
workload generator positions queries according to
the statistical distribution that controls the move-
ment of objects. This is done by asking the world
for a new destination which is basis for the range
and k-NN query. This solution, however, cannot be
used with an external data source.

For choosing query points when using an exter-
nal data generator the approach is slightly differ-
ent. When a query is positioned, a random ob-
ject is chosen. Now the center of this object is the
query point. This approach will reflect the distribu-
tion, as there statistically will be more query points
where there are many objects.

5.5.1 k-NN Query

A k-NN query is defined by a point in space, and
a number, k. The k-NN query returns the k near-
est neighbors to the given point. The output from

32



the workload generator of a k-NN query is the cen-
ter point, then k, followed by two lists. The first
list contains the object ids of those nearest objects
which are bound to be in the result set. The second
list contains object ids that might be in the result
set. In a 5-NN query the nearest three objects may
have different distances to the query point. These
object ids are put in the first list. But the fourth
closest object can be one of three objects, all hav-
ing the same distance to the query point. In this
situation 5 objects cannot be chosen based on dis-
tance. Therefore, these three objects are put in the
second list. The result set is split in two lists as the
workload does not know how the DBMS chooses
the 5 objects. A list of object ids which must be
returned by the DBMS, and a list of object ids that
may be returned.

5.5.2 Range Query

The range query is defined by a rectangle in space.
It returns objects that intersect with this rectangle.
The output from the workload generator for a range
query are the corners of the rectangle and the result
set. The user inputs the size of a range query, which
is a percentage of the universe.

5.6 Output

The output from the workload generator is written
to a file. A fragment of an output file from the
workload generator is shown in Figure 13. A line
starting with i represents an insert. It is followed
by an object id, the time stamp, the lower corner
of the object, and upper corner of the object. u
is an update with the same output as an insert. d
is a delete. d is followed by the object id and the
time. r represents a range query. It is followed by
the lower corner, the upper corner of the range and
the result set. k symbolizes a k-NN query, which is
followed by the point of the query, the number k,
and two lists.

6 Visualization

When the data is generated it is very useful to vi-
sualize it. This way the user can get a visual im-
pression of how the generated data looks. It is easy

. . .
i 35 10.3 10,43 13,44
u 35 11.7 11,40 14,42
d 17 12.4
r 5,7 20,10 1,6,14
k 27,5 5 2,19,22 5,13,36
. . .

Figure 13: Workload fragment

to determine whether changes in, e.g., size and po-
sition of the objects fulfill the demands of the user.
Visualization is possible in both 2D and 3D.

It is possible to visualize all object positions in
one image. This means that the whole path of one
object is drawn as one line in the image. This makes
it easy to get an impression of the objects move-
ment in space. Either each object has its own color,
or each time stamp has its own color.

Visualization is especially useful for finding the
parameter values needed for the desired scenario.
This way a small sample can be generated and vi-
sualized. When the correct parameters are found
the whole data set can be generated.

6.1 Two Dimensions

Visualization in 2D is quite simple. This can be
done by drawing the regions directly to a bitmap
image. This is implemented into STDW. An ex-
ample of a 2D visualization is shown in Figure 14.
Note that the Figures 14(a) and 14(b) show two
different simulations.

(a) One color per object (b) One color per snapshot

Figure 14: Visualization in 2D

6.2 Three Dimensions

3D objects are difficult to visualize in a bitmap im-
age. Therefore, the output is VRML [12] which
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can be shown in an existing external viewer. View-
ing objects in a VRML viewer makes it possible to
rotate, zoom and move around in the data. An ex-
ample of a 3D visualization is shown in Figure 15.
Note that the Figures 15(a) and 15(b) show two
different simulations.

(a) One color per object (b) One color per snapshot

Figure 15: Visualization in 3D

6.3 Feature Matrix

Figure 16 shows a comparison of features between
the reviewed data generators and STDW. It shows
that only STDW is able to produce nD data. All
of the data generators are able to produce 2D data.
Also points and spatial extension are supported by
all the generators. Only the STDW generator is
able to produce a workload. Text output is sup-
ported by all the generators but G-TERD as it pro-
duces raster images. As Oporto is 16 bit, it is not
able generate more than 216 objects. All the gener-
ators are able to visualize the generated data. Only
STDW is able to add noise to the generated re-
sult and add relevant spatial queries. Finally, only
Oporto and STDW are able to restrict certain areas
for object movement. Furthermore, [8] proposes an
extension to GSTD that allows restricted areas.

7 Performance

This section will test the performance of the de-
scribed data and workload generator. The tests
are performed on a 1.8 GHz Intel Pentium 4 pro-
cessor with 1 GB RAM. The operating system is
Microsoft Windows Server 2003 Enterprise Edition
with service pack 1.

The data and workload generators are imple-
mented in C# (approximately 4,000 lines of code).
Size, position, heading, and destination for moving
cuboids are implemented as vectors. This makes
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Figure 16: Feature matrix

the generators able to easily expand the data to
any dimensionality.

All tests are performed five times where the best
and the worst are discarded and the average of the
three remaining is calculated.

7.1 Data Generator

This section will test the performance of the data
generator. The tests will show how the generator
scales with regard to dimensionality, number of ob-
jects, number of snapshots, and number of worlds.

Figure 17 shows the performance of the data gen-
erator.

Figure 17(a) shows the performance with regard
to the number of dimensions. The measurements
are performed on the 10th snapshot generating
30,000 objects. The x-axis shows the number of di-
mensions and the y-axis shows the time spent. The
figure shows that the time consumption is linear in
the number of dimensions.

Figure 17(b) shows the performance with regard
to the number of objects. The measurements are
performed on the 10th snapshot in 3D. The x-axis
shows the number of objects generated and the y-
axis shows the time spent. The figure shows that
the time consumption is almost linear in the num-
ber of objects.

Figure 17(c) shows the performance with regard
to the number of snapshots. The measurements are

34



0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10
dimensions

seconds per 
snapshot

(a) Number of dimensions

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60objects(1,000)

seconds per 
snapshot

(b) Number of objects

0.0

0.5

1.0

1.5

0 10 20 30 40 50

seconds per 
snapshot

snapshots

(c) nth snapshot

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0 2 4 6 8 10

seconds per 
snapshot

worlds

(d) Number of worlds

Figure 17: Data generator performance

performed on 3D data with 30,000 objects. The x-
axis shows the nth snapshot and the y-axis shows
the time spent. The data generation is split in
two phases, initializing and movement. As it can
be seen from the chart, the first snapshot, which
belongs to the initializing phase, consumes more
time than the following snapshots. In the move-
ment phase the time consumption per snapshot is
constant. Due to the design criteria that output
should be easily parsed, objects are generated in
parallel. This requires all objects to be initialized
at the beginning of data generation which results
in the first snapshot being generated slower than
the following.

Figure 17(d) shows the performance with regard
to the number of worlds. The measurements are
performed on the 30,000 objects in 3D where the
10th snapshot is timed. The x-axis shows the num-
ber of worlds and the y-axis shows the time spent.
The figure shows that using only one world is less
time consuming than using multiple worlds. When
using more the one world the time consumption is
almost constant.

Figure 18(a) shows the time used for generat-
ing the nth snapshot for 1,000,000 objects in 3D.
Similarly to Figure 17(c) it can be seen that ini-
tialization of objects requires an overhead in snap-
shot one. In the succeeding snapshots the time con-
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Figure 18: 1 million objects test

sumption stabilizes.
Figure 18(b) shows the memory consumption of

the data generator. The test is performed with up
till 1,000,000 objects in 3D. The measurements are
performed after the first snapshot. The test shows
that the memory consumption is linear in the num-
ber of objects.

The tests have shown that it takes about 30 min-
utes to generate 50 snapshots with 1,000,000 ob-
jects in 3D. This is 50,000,000 object snapshots,
which is about 27,000 modifications per second.
The generator can generate about 11 gigabytes per
hour.

7.2 Workload Generator

This section will test the performance of the work-
load generator. The tests will show how the gener-
ator scales with regard to the two different work-
loads algorithms from Appendix A. Furthermore,
testing generation with queries and generation with
queries including results are carried out.
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Figure 19: Number-of-loads test with different
loads

Figure 19 shows the time used for generating
from 10,000 loads to 50,000 loads using the number-
of-loads algorithm. E.g., 181 represents a workload
containing loads with one insert, eight updates and
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one delete. Q is when a load also contains one range
query, and one 100-NN query, but without query re-
sults. QA means the load also contains query result
sets.

As it can be seen from the figure the most time
consuming tests are to generate workloads with
queries and result sets. This is due to the fact that
the workload generator has to scan all objects in
order to investigate which objects are in the result
set. Figure 19 illustrates that the overhead when
generating loads with queries, compared to loads
without queries is very small.

It can also be seen that loads containing three
inserts, four updates, and three deletes are faster
than loads containing one insert, eight updates, and
one delete. This is because each insert and update
requires computation of the next object position
and size where deletes do not need these calcula-
tions. This means that in a 181 load nine new po-
sitions and sizes are computed. In a 343 load only
seven new object positions and sizes are computed.
This results in less computation in a 343 load than
in a 181 load.
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Figure 20: Number-of-modifications test

Figure 20(a) shows the time used to generate a
workload using the number-of-modifications algo-
rithm. This means at least n operations on 10,000
objects. n is varied on the x-axis. It can be seen
that generating loads consisting of three inserts,
four updates, and three deletes are slower than
loads containing one insert, eight updates, and one
delete. This is in contrast to number-of-loads test.
This is because inserts and deletes always move ob-
jects between different sets, as illustrated in Figure
9. Again, generating queries with answers are very
time consuming as all objects must be scanned.

Figure 20(b) shows how many modifications
there are on each object when using the number-

of-modifications algorithm. The test is performed
with 5,000 start inserts and 10,000 objects config-
ured for minimum 50 modifications on each object.
The figure shows that a 181 workload has more ob-
jects over 50 modifications than the 343 workload.
This is due to the lower number of inserts.

8 Conclusion

This paper has presented STDW, a multi-
dimensional spatio-temporal data and workload
generator. The data generator simulates cuboids
moving between worlds and around blocked spaces.
This makes it easy for the user to create a realistic
universe in which cuboids move.

The workload generator can use any data gen-
erator that implements a simple interface. It can
generate realistic scenarios where objects are mod-
ified in a mix of inserts, updates, and deletes, and
spatial queries. The workload generator is also able
to return the result sets for the queries in order to
ease the verification of tests.

The data is visualized in both two and three di-
mensions. This helps users to better understanding
of the consequences of changes in settings.

A comparison to the three dominant data gen-
erators shows that STDW is the only one able to
produce nD data. Furthermore, STDW is able to
generate workloads from external data souces.

The performance shows that the generator is able
to produce 27,000 object snapshots per second. It
also shows that the time consumption is linear in
the number of dimensions and objects.

Future work is to implement a spatial index into
STDW. This way, the generation of result sets
should become faster.
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A Workload Algorithms

This section presents the workload algorithms dis-
cussed in Section 5.2.

A.1 Number-of-Loads Algorithm

1 procedure nol(conf , dataSource)
2 for(1 to confstartInserts)
3 obj←dataSource.newObject()
4 addTimeAndSpatialNoise(obj)
5 objects←objects ∪ {obj}
6 writeInsert(obj)
7 for(1 to confloads)
8 for(1 to confinserts)
9 obj←dataSource.newObject()

10 addTimeAndSpatialNoise(obj)
11 objects←objects ∪ {obj}
12 writeInsert(obj)
13 for(1 to confupdates)
14 obj←random(objects)
15 dataSource.nextSnapshot(obj)
16 addTimeAndSpatialNoise(obj)
17 writeUpdate(obj)
18 for(1 to confdeletes)
19 obj←random(objects)
20 objects←objects\{obj}
21 writeDelete(obj)
22 makeQueries(conf , objects)
23 makeEndQueries(conf , objects)

Listing 4: Algorithm for generating n workloads

In Line 1, the algorithm receives the param-
eters conf which contains parameters for the
workload generator as described in Section 5.1
and dataSource. dataSource can either be
the data generator described in Section 4 or
any external data generator that implements the
STDW-workload interface described in Section
3.2. Line 2 runs Lines 3–6 confstartInserts times.
confstartInserts represents the number of inserts
done before doing the loads. Line 3 acquires a new
object from the data source. In Line 4 noise is
added to the position of the object, and the time
is changed. This new object is added to the set of
currently inserted objects in Line 5. Line 6 han-
dles output of the insert to the file. Line 7 runs
the Lines 8–22 confloads times. confloads is the
number of mixes of inserts, updates, deletes, and
queries. Lines 8–12 are iterated confinserts times.
Line 9 acquires a new object from the data source.
The time is changed and spatial noise is added to
the object in Line 10. In Line 11 the new object
is added to the set of objects which are currently
inserted. Line 12 outputs the object to the file.
Line 13 runs Lines 14–17 confupdates times in or-
der to make confupdates number of updates. Line

14 selects a random object from the set of currently
inserted objects. Line 15 asks dataSource for the
next snapshot of that object. Line 16 changes the
time and adds spatial noise to the object. Line 17
outputs the update to the file. Line 18 runs the
Lines 19–21 confdeletes times. In Line 19 an ob-
ject is randomly selected. This object is removed
from the currently inserted objects in Line 20. Line
21 outputs this delete to the file. Finally in Lines
22–23 queries are produced and added to the file.
These queries consist of a number of k-NN queries
and range queries.

A.2 Number-of-modifications Algo-
rithm

1 procedure nom(conf , dataSource)
2 for(1 to confobjectCount)
3 obj←dataSource.newObject()
4 objectsdead←objectsdead ∪ {obj}
5 for(1 to confstartInserts)
6 obj←random(objectsdead)
7 objectsdead←objectsdead\{obj}
8 addTimeAndSpatialNoise(obj)
9 objectsliving←objectsliving ∪ {obj}

10 writeInsert(obj)
11 while(|objectscomplete| < confobjectCount)
12 for(1 to confinserts)
13 if (objectsdead 6= ∅) obj←random(objectsdead)
14 else obj←random(objectscomplete\objectsliving

)
15 objectsdead←objectsdead\{obj}
16 dataSource.nextSnapshot(obj)
17 addTimeAndSpatialNoise(obj)
18 objectsliving←objectsliving ∪ {obj}
19 writeInsert(obj)
20 if (objmodifications = confminModifications)
21 objectscomplete←objectscomplete ∪ {obj}
22 for(1 to confupdates)
23 if (objectsliving\objectscomplete 6= ∅)
24 obj←random(objectsliving\objectscomplete)
25 else obj←random(objectsliving)
26 dataSource.nextSnapshot(obj)
27 addTimeAndSpatialNoise(obj)
28 writeUpdate(obj)
29 if (objmodifications = confminModifications)
30 objectscomplete←objectscomplete ∪ {obj}
31 for(1 to confdeletes)
32 if (objectsliving ∩ objectscomplete 6= ∅)
33 obj←random(objectsliving ∩ objectscomplete)
34 else obj←random(objectsliving)
35 objectsliving←objectsliving\{obj}
36 if (objmodifications = confminModifications)
37 objectscomplete←objectscomplete ∪ {obj}
38 if (obj /∈ objectscomplete)
39 objectsdead←objectsdead ∪ {obj}
40 writeDelete(obj)
41 makeQueries(conf , objects)
42 makeEndQueries(conf , objects)

Listing 5: Algorithm generating at least n
modifications per object on a collection of o objects
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The algorithm in Listing 5 resembles the one
in Listing 4. In Line 1 the algorithm receives
the parameters conf which contains parameters for
the workload and dataSource. dataSource can ei-
ther be the data generator described in Section
4, or any external data generator that implements
the STDW-workload interface described in Section
3.2. Line 2 runs Lines 3–4 confobjectCount times.
confobjectCount is the total number of objects. Line
3 gets a new object from the data source, and Line
4 adds this object to the set of objects currently not
inserted, called objectsdead. Line 5 runs Lines 6–10
confstartInserts times. In Line 6 a random object
is chosen from objectsdead. The object is removed
from objectsdead in Line 7. Spatial noise is added to
the object position, and the time stamp is changed
in Line 8. In Line 9 the object is added to the set of
currently inserted objects. The object information
is written to the file in Line 10.

Line 11 runs Lines 12–41 until all objects have
reached confminModifications. Lines 12–21 are it-
erated confinserts times. In Line 13 it is examined
whether any objects are currently not inserted that
have not reached confminModifications. If this is the
case one of them is chosen. Else in Line 14 an ob-
ject is chosen from objectscomplete. This object is
to be inserted, hence it cannot be in objectsliving.
The object is removed from objectsdead in Line 15.
In Line 16 the next snapshot for the object is cal-
culated. Line 17 adds noise to the object. The ob-
ject is added to objectsliving in Line 18. In Line
19 the object information is written to the file.
Lines 20–21 checks whether the object has reached
confminModifications. If this is the case the object
is added to objectscomplete.

Line 22 runs Lines 23–30 confupdates times. In
Lines 23–24 a random object, that has not reached
confminModifications, is chosen from objectsliving.
If this is not possible an object is chosen from
objectscomplete in Line 25. The next snapshot for
the object is calculated in Line 26. Spatial noise
is added to the object’s position, and the time
stamp is changed in Line 27. The update is writ-
ten to the file in Line 28. If the object has reached
confminModifications it is added to objectscomplete

in Lines 29–30. Lines 31–40 confdeletes times. In
Lines 32–33 a random object in objectsliving, which
has reached confminModifications, is chosen. If this
is not possible a random object is chosen from

objectsliving in Line 34. In Line 35 the object is
removed from objectsliving. If the object has reach
confminModifications it is added to objectscomplete

in Lines 36–37. On the other hand, if the object
has not reached confminModifications it is added
to objectsdead in Lines 38–39. The delete is out-
put to the file in Line 40. Finally in Lines 41–42
queries are produced and added to the file. These
queries consist of a number of k-NN queries and
range queries.
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